- 对心碰撞和非对心碰撞、散射
- 共327题
如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m。人在极短时间内给第一辆车一水平 冲量使其运动,当车运动了距离L时与第二车相碰,两车以共同速率继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止.车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:
(1)整个过程中摩擦阻力所做的总功。
(2)人给第一辆车水平冲量的大小。
(3)第一次与第二次碰撞系统动能损失之比。
正确答案
解:(1)设运动过程中摩擦阻力做的总功为W,则
W=-kmgL-2kmgL-3kmgL=-6kmgL
(2)设第一车初速度为u0,第一次碰前速度为v1,碰后共同速度为u1;第二次碰前速度为v2,碰后共同速度为u2;人给第一车的水平冲量大小为I
由
mv1=2mu1
2mv2=3mu2
得:
(3)设两次碰撞中系统动能损失分别为△Ek1和△Ek2由,
得△Ek1:△Ek2=13 : 3
如图,在光滑的水平面上有一辆很长的小车以速度v向右运动,小车的质量为M,前方很远的地方有一与车等高的竖直光滑半径为R的半圆,直径AB在竖直方向上。现在有一个质量为m的滑块以同样的速度为v冲上小车,已知车的质量大于滑块的质量,滑块与车之间的动摩擦因数为μ。求:
(1)滑块的最终速度;
(2)滑块向左运动的最远距离;
(3)如果滑块冲上小车的瞬间,车与B的距离为,且M=3m,M与B处碰后立即停下,滑块能否通过A点?若能,求出滑块落点到B的距离。
正确答案
解:(1)对Mm:相互作用过程,动量守恒,以向右为参考正方向:
,方向向右
(2)对m:向左运动过程,vt=0时,向左最远
(3)对M:从v到v1的过程:,
∵S>S1∴m与M相对静止后,M与B相碰
对Mm:从v到v1的过程:m相对M发生位移为L:
或
碰后,对m:从v1到最高点:
∵<
∴m无法到达B,无法通过A点
如图,绝缘水平地面上有宽L=0.4 m的匀强电场区域,场强E=6×105 N/C、方向水平向左,不带电的物块B静止在电场边缘的O点,带电量q=5×10-8 C、质量mA=1×10-2 kg的物块A在距O点s=2.25 m处以v0=5 m/s的 水平初速度向右运动,并与B发生碰撞,假设碰撞前后A,B构成的系统没有动能损失。A的质量是B的k(k>1)倍,A,B与地面间的动摩擦因数都为μ=0.2,物块均可视为质点,且A的电荷量始终不变,取g=10 m/s2。
(1)求A到达O点与B碰撞前的速度大小;
(2)求碰撞后瞬间A和B的速度大小;
(3)讨论k在不同取值范围时电场力对A做的功。
正确答案
解:(1)设碰撞前A的速度为v,由动能定理
①
得 ②
(2)设碰撞后A,B速度分别为vA,vB,且设向右为正方向;由于弹性碰撞,所以有
mAv=mAvA+mBvB ③
④
联立③④并将mA=kmB及v=4 m/s代入得 ⑤,
⑥
(3)讨论:
Ⅰ、如果A能从电场右边界离开,必须满足 ⑦
联立⑤⑦代入数据,得k>3 ⑧
电场力对A做功为WE=qEL=6×105×5×10-8×0.4 J=1.2×10-2 J ⑨
Ⅱ、如果A不能从电场右边界离开电场,必须满足 ⑩
联立⑤⑩代入数据,得k≤3
考虑到k>1,所以在1<k≤3范围内A不能从电场右边界离开
又qE=3×10-2 N>μmg=2×10-2 N
所以A会返回并从电场的左侧离开,整个过程电场力做功为0,即WE=0
如图所示,长木板A上右端有一物块B,它们一起在光滑的水平面上向左做匀速运动,速度v0=2.0 m/s。A左侧有一个与A等高的固定物体C。已知A的质量为mA=1.0 kg,物块B的质量为mB=3.0 kg,B与A间的动摩擦因数μ=0.5,取g=10 m/s2。求:
(1)若A足够长,A与C第一次碰撞后,A立即与C粘在一起,求B在A上滑行的距离L应是多少;
(2)若A足够长,A与C发生碰撞后弹回(碰撞时间极短,没有机械能损失),求第一次碰撞后A、B具有的共同运动速度;
(3)若A长为0.51 m,且A与C每次碰撞均无机械能损失,求A与C碰撞几次,B可脱离A?
正确答案
解:(1)A与C碰撞后速度变为0,而B将继续运动,受摩擦力作用,速度由v0减到0,由动能定理
(2)A与C发生碰撞后的瞬间,速度大小仍为v0,方向向右,以A、B为研究对象,设A、B有共同的速度v,水平方向不受外力作用,系统动量守恒,设向左为正,则mBv0-mAv0=(mA+mB)v
,方向水平向左
(3)第一次A与C碰后,A、B有共同的速度v,B在A上相对于A滑行L1,则
,L1=0.40 m
第二次A与C碰后至A、B有共同的速度v',B在A上相对于A滑行L2,则
mBv-mAv=(mA+mB)v',
由以上两式,可得L2=0.10 m
设第三次A与C碰后,A、B仍有共同的速度v'',B在A上相对于A 滑行L3,则
mBv'-mAv'=(mA+mB)v'',
由以上两式,可得L3=0.025 m
则L1+L2+L3=0.525m>0.51 m
即第三次碰后B可以脱离A
如图所示,长为L的细绳竖直悬挂着一质量为2m的小球A,恰好紧挨着放置在水平面上质量为m的物块B。现保持细绳绷直,把小球向左上方拉至细绳与竖直方向成60°的位置,然后释放小球。小球到达最低点时恰好与物块发生碰撞,而后小球向右摆动的最大高度为L/8,物块则向右滑行了L的距离而静止,求物块与水平面间的动摩擦因数μ。
正确答案
解:对小球下摆过程分析,根据机械能守恒: ①
对小球上摆过程分析,根据机械能守恒: ②
对小球和物块碰撞瞬间分析,根据动量守恒: ③
由①②③式解得: ④
对碰后物块分析,根据动能定理: ⑤
由④⑤解得物块与水平面间的动摩擦因数μ=0.5
扫码查看完整答案与解析