热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

在机场、海港、粮库,常用水平输送带运送旅客、货物、和粮食等,右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=2m/s的恒定速率运行;一质量为m=6kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.2,AB间的距离l=4m,g取10m/s2

(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;

(2)求行李做匀加速直线运动的时间;

(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.

正确答案

解:(1)滑动摩擦力F=μmg

代入题给数值,得 F=12N

由牛顿第二定律,得 F=ma

代入数值,得 a=2m/s2

(2)设行李做匀加速运动的时间为t,行李加速运动的末速度为v=2m/s.

则v=at1 代入数值,得t1=1s

(3)行李从A处匀加速运动到B处时,传送时间最短.则

L=atmin2

代入数值,得tmin=2s

传送带对应的最小运行速率vmin=atmin

代入数值,得vmin=4m/s

答:(1)行李刚开始运动时所受的滑动摩擦力大小为12N,加速度大小为2m/s2

(2)行李匀加速运动的时间为1s;

(3)行李从A处传送到B处的最短时间为2s,传送带对应的最小运行速率为4m/s.

解析

解:(1)滑动摩擦力F=μmg

代入题给数值,得 F=12N

由牛顿第二定律,得 F=ma

代入数值,得 a=2m/s2

(2)设行李做匀加速运动的时间为t,行李加速运动的末速度为v=2m/s.

则v=at1 代入数值,得t1=1s

(3)行李从A处匀加速运动到B处时,传送时间最短.则

L=atmin2

代入数值,得tmin=2s

传送带对应的最小运行速率vmin=atmin

代入数值,得vmin=4m/s

答:(1)行李刚开始运动时所受的滑动摩擦力大小为12N,加速度大小为2m/s2

(2)行李匀加速运动的时间为1s;

(3)行李从A处传送到B处的最短时间为2s,传送带对应的最小运行速率为4m/s.

1
题型:简答题
|
简答题

如图所示,质量为m的物体,放在一固定斜面上,物体与斜面间的动摩擦因数μ=当斜面倾角为θ时物体恰能沿斜面匀速下滑,此时再对物体施加一个大小为F的水平向右的恒力,物体可沿斜面匀速向上滑行.试求:

(1)斜面倾角θ;

(2)水平向右的恒力F的大小.

正确答案

解:物体匀速下滑时,由:mgsinθ=f1  

N1=mgcosθ   

又 f1=μN1  

得:θ=30°

(2)物体沿斜面匀速上升,沿斜面方向有:Fcos30°=mgsin30°+f2  

垂直于斜面方向有:N2=mgcos30°+Fsin30°   

又 f2=μN2  

联立得:F=

答:(1)斜面倾角θ为30°;

(2)水平向右的恒力F的大小为

解析

解:物体匀速下滑时,由:mgsinθ=f1  

N1=mgcosθ   

又 f1=μN1  

得:θ=30°

(2)物体沿斜面匀速上升,沿斜面方向有:Fcos30°=mgsin30°+f2  

垂直于斜面方向有:N2=mgcos30°+Fsin30°   

又 f2=μN2  

联立得:F=

答:(1)斜面倾角θ为30°;

(2)水平向右的恒力F的大小为

1
题型:简答题
|
简答题

摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,当它转弯时,在电脑控制下,车厢会自动倾斜,产生转弯需要的向心力;行走在直线时,车厢又恢复原状,靠摆式车体的先进性无需对线路等设施进行较大的改造,就可以实现高速行车.假设有一摆式超高速列车在水平面内行驶,以216km/h的速度拐弯,拐弯半径为1.8km,为了避免车厢内的物件、行李测滑行和站着的乘客失去平衡而跌倒,在拐弯过程中车厢自动倾斜,车厢底部与水平面的倾角θ的正切tanθ约为多少?(g=10m/s2

正确答案

解:根据牛顿第二定律得:

mgtanθ=m

解得:tanθ===0.2

答:车厢底部与水平面的倾角θ的正切tanθ约为0.2.

解析

解:根据牛顿第二定律得:

mgtanθ=m

解得:tanθ===0.2

答:车厢底部与水平面的倾角θ的正切tanθ约为0.2.

1
题型: 单选题
|
单选题

如图所示,一质量为m的物体系于长度分别为l1、l2的轻弹簧和细线上,l1的一端悬挂在天花板上,与竖直方向夹角,l2水平拉直,物体处于平衡状态,重力加速度大小为g,下列说法错误的是(  )

A轻弹簧的拉力为

B轻绳拉力大小为

C剪断轻绳瞬间,物体加速度大小为gtanθ

D去掉轻弹簧瞬间,物体加速度大小为g

正确答案

C

解析

解:A、剪断轻绳前物体受力如图所示:

 

由平衡条件得:f=mgtanθ,F=,故A正确,B错误;

C、弹簧的弹力不能突变,剪断轻绳瞬间,由牛顿第二定律得:mgtanθ=ma,解得加速度:a=gtanθ,故C正确;

D、去掉轻弹簧的瞬间,物体受到竖直向下的重力与轻绳的拉力作用,物体受到的合力不是mg,加速度不是g,故D错误;

故选:C.

1
题型:简答题
|
简答题

如图所,质量m=2kg的物体静止在水平地面上,现用F=10N的水平推力推该物体,使其做匀加速直线运动,已知物体和地面间的动摩擦因数为0.2,重力加速度g取10m/s2,试求:

(1)物体的加速度大小;

(2)从静止开始2s内物体的位移大小;

(3)若2s末撤去推力F,则物体还能运动多长时间?

正确答案

解:(1)物体受重力、支持力、拉力和滑动摩擦力,根据牛顿第二定律,有:

F-μmg=ma

解得:a==

(2)2s内的位移:x==6m

(3)2s末的速度:v=at=3×2=6m/s

减速过程加速度:a′=-μg=-2m/s2

减速过程的时间:t′=

答:(1)物体的加速度大小为3m/s2

(2)从静止开始2s内物体的位移大小为6m;

(3)若2s末撤去推力F,则物体还能运动3s时间.

解析

解:(1)物体受重力、支持力、拉力和滑动摩擦力,根据牛顿第二定律,有:

F-μmg=ma

解得:a==

(2)2s内的位移:x==6m

(3)2s末的速度:v=at=3×2=6m/s

减速过程加速度:a′=-μg=-2m/s2

减速过程的时间:t′=

答:(1)物体的加速度大小为3m/s2

(2)从静止开始2s内物体的位移大小为6m;

(3)若2s末撤去推力F,则物体还能运动3s时间.

1
题型:简答题
|
简答题

(2016•长宁区一模)如图,一质量m=2kg的小球套在一根固定的足够长的直杆上,直杆与水平面夹角θ=37°.现小球在与杆也成θ角的斜向上F=20N的外力作用下,从A点静止出发向上运动.已知杆与球间的动摩擦因数μ=0.5,g取10m/s2,sin37°=0.6,cos37°=0.8.求:

(1)小球运动的加速度a1

(2)若F作用4s后撤去,小球上滑过程中距A点最大距离sm

(3)上题中,若从撤去力F开始计时,小球经多长时间将经过距A点上方8.35m的B点.

正确答案

解:(1)在力F作用时有,根据牛顿第二定律得:Fcos37°-mgsin37°-μ(mg cos37°-F sin37°)=ma1  解得:a1=1m/s2

(2)刚撤去F时,小球的速度υ1=a1t1=4m/s,

小球的位移s1=t1=8m,

撤去力F后,小球上滑时有:-(mgsin37°+μmgcos37°)=ma2

解得:a2=-10 m/s2

因此小球上滑时间t2==0.4s,

上滑位移s2=t2=0.8m,

则小球上滑的最大距离为sm=s1+s2=8.8m

(3)在上滑阶段通过B点:sAB-s11t3-a2t32

通过B点时间t3=0.1s,另t3=0.7s (舍去)        

小球返回时有:mgsin37°-μmgcos37°=ma3 

解得:a3=2 m/s2

因此小球由顶端返回B点时有:sm-sAB=a3t42      

解得:t4=

通过B点时间t=t2+t4=≈1.07 s

答:(1)小球运动的加速度a1为1m/s2

(2)若F作用4s后撤去,小球上滑过程中距A点最大距离sm为8.8m;

(3)上题中,若从撤去力F开始计时,小球经0.1s或1.07s时间将经过距A点上方8.35m的B点.

解析

解:(1)在力F作用时有,根据牛顿第二定律得:Fcos37°-mgsin37°-μ(mg cos37°-F sin37°)=ma1  解得:a1=1m/s2

(2)刚撤去F时,小球的速度υ1=a1t1=4m/s,

小球的位移s1=t1=8m,

撤去力F后,小球上滑时有:-(mgsin37°+μmgcos37°)=ma2

解得:a2=-10 m/s2

因此小球上滑时间t2==0.4s,

上滑位移s2=t2=0.8m,

则小球上滑的最大距离为sm=s1+s2=8.8m

(3)在上滑阶段通过B点:sAB-s11t3-a2t32

通过B点时间t3=0.1s,另t3=0.7s (舍去)        

小球返回时有:mgsin37°-μmgcos37°=ma3 

解得:a3=2 m/s2

因此小球由顶端返回B点时有:sm-sAB=a3t42      

解得:t4=

通过B点时间t=t2+t4=≈1.07 s

答:(1)小球运动的加速度a1为1m/s2

(2)若F作用4s后撤去,小球上滑过程中距A点最大距离sm为8.8m;

(3)上题中,若从撤去力F开始计时,小球经0.1s或1.07s时间将经过距A点上方8.35m的B点.

1
题型:简答题
|
简答题

如图所示,A的质量为3m,B的质量为2m,两球用细线悬挂于天花板上静止不动.两球间是一个轻质弹簧,如果突然剪断悬线,则在剪断悬线瞬间,A球加速度为______;B球加速度为______.(已知重力加速度为g)

正确答案

解:悬线剪断前,以B为研究对象可知:弹簧的弹力F=2mg.

以A、B整体为研究对象可知悬线的拉力为 T=5mg;

剪断悬线瞬间,弹簧的弹力不变,F=2mg,根据牛顿第二定律:

    对A:3mg+F=3maA,又F=2mg,得aA=g,

    对B:F-2mg=2maB,F=2mg,得aB=0

故答案为:g,0

解析

解:悬线剪断前,以B为研究对象可知:弹簧的弹力F=2mg.

以A、B整体为研究对象可知悬线的拉力为 T=5mg;

剪断悬线瞬间,弹簧的弹力不变,F=2mg,根据牛顿第二定律:

    对A:3mg+F=3maA,又F=2mg,得aA=g,

    对B:F-2mg=2maB,F=2mg,得aB=0

故答案为:g,0

1
题型:简答题
|
简答题

在国道的某一特殊路段,司机发现“雨天在此路段以的速度刹车后的刹车距离”仍然达到“晴天在此路段以v0的速度刹车后的刹车距离”的两倍,已知该车在晴天路面上刹车时的加速度大小为8m/s2,取g=10m/s2,求:

(1)汽车在晴天路面上刹车时与地面间的动摩擦因数μ;

(2)该车在雨天路面上刹车时的加速度大小;

(3)若汽车在雨天路面上的刹车时间为4s,求刹车距离.

正确答案

解:(1)汽车在晴天路面上刹车过程中,由牛顿第二定律得

   N=mg

   f=ma

又 f=μN

解得 μ==0.8

(2)由运动学公式得:

晴天路面刹车时有:=2as

下雨路面刹车时有:=2a′•2s

解得该车在下雨路面上刹车时的加速度大小为 a′=1m/s2

(3)由运动学公式得:

  s′==m=8m

答:

(1)汽车在晴天路面上刹车时与路面间的动摩擦因数是0.8;

(2)该车在雨天路面上刹车时的加速度大小是1m/s2

(3)若汽车在雨天路面上的刹车时间为4s,刹车距离是8m.

解析

解:(1)汽车在晴天路面上刹车过程中,由牛顿第二定律得

   N=mg

   f=ma

又 f=μN

解得 μ==0.8

(2)由运动学公式得:

晴天路面刹车时有:=2as

下雨路面刹车时有:=2a′•2s

解得该车在下雨路面上刹车时的加速度大小为 a′=1m/s2

(3)由运动学公式得:

  s′==m=8m

答:

(1)汽车在晴天路面上刹车时与路面间的动摩擦因数是0.8;

(2)该车在雨天路面上刹车时的加速度大小是1m/s2

(3)若汽车在雨天路面上的刹车时间为4s,刹车距离是8m.

1
题型:简答题
|
简答题

质量为2kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧沿木板上表面水平冲上木板,如图甲所示.A和B经过ls达到同一速度,之后共同减速直至静止,A和B的υ-t图象如图乙所示,重力加速度g=10m/s2,求:

(1)A与B上表面之间的动摩擦因数μ1

(2)B与水平面间的动摩擦因数μ2

(3)A的质量.

正确答案

解:(1)由图象可知,A在0-1s内的加速度

对A由牛顿第二定律得,

1mg=ma1

解得μ1=0.2.

(2)由图象知,AB在1-3s内的加速度

对AB由牛顿第二定律得,

-(M+m)gμ2=(M+m)a3

解得μ2=0.1.

(3)由图象可知B在0-1s内的加速度

对B由牛顿第二定律得,μ1mg-μ2(M+m)g=Ma2

代入数据解得m=6kg.

答:(1)A与B上表面之间的动摩擦因数μ1为0.2.

(2)动摩擦因数μ2为0.1.

(3)A的质量为6kg.

解析

解:(1)由图象可知,A在0-1s内的加速度

对A由牛顿第二定律得,

1mg=ma1

解得μ1=0.2.

(2)由图象知,AB在1-3s内的加速度

对AB由牛顿第二定律得,

-(M+m)gμ2=(M+m)a3

解得μ2=0.1.

(3)由图象可知B在0-1s内的加速度

对B由牛顿第二定律得,μ1mg-μ2(M+m)g=Ma2

代入数据解得m=6kg.

答:(1)A与B上表面之间的动摩擦因数μ1为0.2.

(2)动摩擦因数μ2为0.1.

(3)A的质量为6kg.

1
题型: 单选题
|
单选题

如图所示,a、b两物体的质量分别为m1和m2,由轻质弹簧相连.当用恒力F竖直向上拉着a,使a、b-起向上做匀加速直线运动时,弹簧伸长量为为x1,加速度大小为a1;当用大小仍为F的恒力沿水平方向拉着a,使a、b-起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,加速度大小为a2.则有(  )

Aa1=a2,x1=x2

Ba1<a2,x1=x2

Ca1=a2,x1>x2

Da1<a2,x1>x2

正确答案

B

解析

解:对整体分析有:,可知a1<a2

隔离对b分析有:F1-m2g=m2a1

解得:

,可知F1=F2,根据胡克定律知,x1=x2

故选:B.

1
题型:填空题
|
填空题

如图所示,质量为m的物体受到4个共点力的作用下正在作匀速直线运动,速度方向与F1、F3方向恰在一直线上,则(运动前填“直线”或“曲线”)

(1)若只撤去F1,则物体将作______运动,加速度大小为______m/s2,方向为______

(2)若只撤去F2,它将作______运动,加速度大小为______m/s2,方向为______

(3)若只撤去F3,它将作______运动,加速度大小为______m/s2,方向为______

正确答案

匀加速直线运动

F1的反方向

匀变速直线运动

F2的反方向.

匀减速直线运动

F3的反方向

解析

解:(1)开始时物体处于平衡状态,合力为零,若只撤去F1,剩余力的合力与F1等值反向,所以加速度大小 a=,方向与F1方向相反,由于合力方向与速度方向相同,则物体做匀加速直线运动.

(2)若撤去F2,物体所受的合力大小为F2,方向与F2方向相反,则加速度大小a=,方向与F2的方向相反,由于合力的方向与速度方向不在同一条直线上,可知物体做匀变速曲线运动.

(3)若撤去F3,物体所受的合力为F3,方向与F3方向相反,则加速度大小 a=,方向与F3的方向相反,由于合力的方向与速度方向相反,物体做匀减速直线运动.

故答案为:

(1)匀加速直线运动,,F1的反方向.

(2)匀变速曲线运动,,F2的反方向.

(3)匀减速直线运动,,F3的反方向.

1
题型:填空题
|
填空题

一辆小车以54km/h的速度沿水平路面行驶时,突然紧急刹车,刹车后路面对车的摩擦力等于车重的0.6倍,小车刹车后3.0s内的位移为______m.(g=10m/s2

正确答案

18.75

解析

解:根据牛顿第二定律得,小车刹车后的加速度大小为:

a=

对速度进行单位换算有:54km/h=15m/s.

小车刹车到停止所需的时间为:

t=,知小车3s末已停止.

则位移为:

故答案为:18.75.

1
题型:填空题
|
填空题

如图所示,位于竖直平面内的固定半径为R的光滑圆环轨道,圆环轨道与水平面相切于M点,A、B为圆弧轨道上两点,O是圆环轨道的圆心,C是圆环上与M靠得很近的一点(CM远小于R).已知在同一时刻:a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道运动到M点;c球从C点静止出发沿圆环运动到M点.则a、b、c三个小球到达M点的时间ta、tb、tc的大小关系是______.重力加速度取为g,c球到达M点的时间为______

正确答案

ta=tb>tc

k=0、1、2、3、…

解析

解:设斜面的倾角为θ,对于a、b球,位移x=2Rsinθ,

加速度为:a==gsinθ,

由匀变速直线运动的位移公式得:

x=at2

则:t===

则a、b的运动时间相等,ta=tb

c球的运动类似单摆运动,tc=T=×2π=

则:ta=tb>tc

c球到达M点的时间可能为四分之一周期、或四分之三周期、kT加T或kT+T,

则c到达M的时间为:tc=  k=0、1、2、3、…;

故答案为:ta=tb>tc  k=0、1、2、3、….

1
题型:简答题
|
简答题

如图所示,在一个水平向右匀加速直线运动的质量为M的车厢里,用一个定滑轮通过绳子悬挂两个物体,物体的质量分别为m1、m2.已知m1<m2,m2静止在车厢的地板上,m1向左偏离竖直方向θ角.这时,

(1)汽车的加速度有多大?并讨论汽车可能的运动情况.

(2)作用在m2上的摩擦力大小是多少?

(3)车厢的地板对m2的支持力为多少?

正确答案

解:(1)物体1与车厢具有相同的加速度,对物体1分析,受重力和拉力,根据合成法知,F=m1gtanθ,T=,物体1的加速度a=gtanθ,所以汽车可能向右加速或者向左减速;

(2)物体2加速度为gtanθ,对物体2受力分析,受重力、支持力和摩擦力,水平方向有:f=ma=mgtanθ

(3)竖直方向有:N=m2g-T=m2g-

答:(1)汽车的加速度为gtanθ 汽车向右加速或者向左减速;

(2)作用在m2上的摩擦力大小是m2gtanθ;

(3)车厢的地板对m2的支持力为m2g-

解析

解:(1)物体1与车厢具有相同的加速度,对物体1分析,受重力和拉力,根据合成法知,F=m1gtanθ,T=,物体1的加速度a=gtanθ,所以汽车可能向右加速或者向左减速;

(2)物体2加速度为gtanθ,对物体2受力分析,受重力、支持力和摩擦力,水平方向有:f=ma=mgtanθ

(3)竖直方向有:N=m2g-T=m2g-

答:(1)汽车的加速度为gtanθ 汽车向右加速或者向左减速;

(2)作用在m2上的摩擦力大小是m2gtanθ;

(3)车厢的地板对m2的支持力为m2g-

1
题型:简答题
|
简答题

如图,质量M=8.0kg的小车停放在光滑水平面上.在小车右端施加一个F=8.0N的水平恒力.当小车向右运动的速度达到3.0m/s时,在其右端轻轻放上一个质量m=2.0kg的小物块(初速为零),物块与小车间的动摩擦因数μ=0.20,假定小车足够长.求:

(1)经多长时间物块停止在小车上相对滑动?

(2)小物块从放在车上开始,经过t=3.0s,通过的位移是多少?(取g=10m/s2

正确答案

解:(1)对物块:μmg=ma1

∴a1=μg=2m/s2

对小车:F-μmg=Ma2

∴a2=0.5m/s2

物块在小车上停止相对滑动时,速度相同

则有:a1t10+a2t1

∴t1=

(2)t1物块位移x1=

t1时刻物块速度υ1=a1t1=4m/s

t1后M,m有相同的加速度,对M,m 整体有:F=(M+m)a3

∴a3=0.8m/s2

∴x21(t-t1)+=4.4m

∴3S内物块位移x=x1+x2=8.4m 

答:(1)经多2s物块停止在小车上相对滑动;

    (2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.

解析

解:(1)对物块:μmg=ma1

∴a1=μg=2m/s2

对小车:F-μmg=Ma2

∴a2=0.5m/s2

物块在小车上停止相对滑动时,速度相同

则有:a1t10+a2t1

∴t1=

(2)t1物块位移x1=

t1时刻物块速度υ1=a1t1=4m/s

t1后M,m有相同的加速度,对M,m 整体有:F=(M+m)a3

∴a3=0.8m/s2

∴x21(t-t1)+=4.4m

∴3S内物块位移x=x1+x2=8.4m 

答:(1)经多2s物块停止在小车上相对滑动;

    (2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.

百度题库 > 高考 > 物理 > 牛顿运动定律

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题