热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

“温室效应”是哥本哈根气候变化大会研究的环境问题之一。CO2是目前大气中含量最高的一种温室气体。因此,控制和治理CO2是解决“温室效应”的有效途径。

(1)下列措施中,有利于降低大气中CO2浓度的有         (填字母)。

A.采用节能技术,减少化石燃料的用量

B.鼓励乘坐公交车出行,倡导低碳生活

C.利用太阳能、风能等新型能源替代化石燃料

(2)一种途径是将CO2转化成有机物实现碳循环。如:

2CO2(g)+2H2O(l)=C2H4(g)+3O2(g)    △Hl="+1411.0" kJ/mol

2CO2(g)+3H2O(l)=C2H5OH(l)+3O2(g)   △H2="+1366.8" kJ/mol

则由乙烯水化制乙醇的热化学方程式是               

(3)在一定条件下,6H2(g)+2CO2(g)CH3CH2OH(g)+3H2O(g)。

 

根据上表中数据分析:

①温度一定时,提高氢碳比[],CO2的转化率        (填“增大”“减小”或“不变”)。

②该反应的正反应为        (填“吸”或“放”)热反应。

(4)下图是乙醇燃料电池(电解质溶液为KOH溶液)的结构示意图,则b处通入的是       (填“乙醇”或“氧气”),a处发生的电极反应是         

正确答案

(1)abc(2分)

(2)C2H4(g)+H2O(l)=C2H5OH(l) △H="-44.2" kJ/mol(2分)

(3)①增大(2分)②放(2分)

(4)氧气(2分);CH3CH2OH+16OH--12e-===2CO32-+11H2O(2分)

试题分析:(1)a.采用节能技术能减少化石燃料的使用,减少化石燃料的使用就减少了二氧化碳的排放,所以正确;

b.化石燃料燃烧产物是二氧化碳,减少化石燃料的使用就减少了二氧化碳的排放,所以正确.

c.利用太阳能、风能能减少化石燃料的使用,化石燃料燃烧产物是二氧化碳,减少化石燃料的使用就减少了二氧化碳的排放,所以正确;故选abc;

(2)2CO2(g)+2H2O(l)═C2H4(g)+3O2(g)△H=+1411.0kJ/mol①

2CO2(g)+3H2O(l)═C2H5OH(l)+3O2(g)△H=+1366.8kJ/mol②

将方程式②-①得C2H4(g)+H2O(l)═C2H5OH(l)△H=+1366.8kJ/mol-(+1411.0kJ/mol)=-44.2kJ/mol;

(3)①温度一定时,提高氢碳比(3)①温度一定时,提高氢碳比[],相当于增加氢气的量,增加氢气的量能够使二氧化碳的转化率增大;

②从表中数据看出:温度越高,二氧化碳的转化率越小,升高温度化学平衡向着吸热方向,即向着使二氧化碳的转化率减小的方向(逆向)进行,故正向是放热反应;

(4)根据电子流向知,a电极是负极,b电极是正极,负极上燃料乙醇失电子发生氧化反应,正极上氧化剂得电子发生还原反应,所以b处是氧气,b处的电极反应式为:O2+2H2O+4e═4OH

1
题型:填空题
|
填空题

研究、CO等大气污染气体的测量及处理具有重要意义。

(1)可使等氧化,常用于定量测定CO的含量。已知:

写出CO(g)与反应生成的热化学方程式:________________。

(2)CO可制做燃料电池,以KOH溶液作电解质,向两极分别充入CO和空气,工作过程中,K+移向_______极(填“正”或“负”),正极反应方程式为:___________________。

(3)新型氨法烟气脱硫技术的化学原理是采用氨水吸收烟气中的SO2,再用一定量的磷

酸与上述吸收产物反应。该技术的优点除了能回收利用SO2外,还能得到一种复合肥料。

①该复合肥料可能的化学式为___________(写出一种即可)。

②若氨水与恰好完全反应生成正盐,则此时溶液呈________性(填“酸”或“碱”)。

常温下弱电解质的电离平衡常数如下:氨水

③向②中溶液中通入________气体可使溶液呈中性。(填“SO2”或NH3”)

此时溶液中________2(填“>”“<”或“=”)

(4)可用强碱溶液吸产生硝酸盐。在酸性条件下,FeSO4溶液能将还原为NO,写出该过程中产生NO反应的离子方程式___________________________________。

正确答案

(每空2分)

(1)5CO(g) + I2O5(s) = 5CO2 + I2(s) ∆H= -1377.22kJ•mol‾1

(2)正,O2 + 2H2O +4e‾ = 4OH‾

(3)① (NH4)3PO4或(NH4)2HPO4或NH4H2PO4

②碱 ③ SO2   >

(4)3Fe2+ + NO3‾ + 4H+ =3Fe3+ +NO↑+ 2H2O

试题分析:(1)先写出化学方程式,标明各物质的状态,然后根据盖斯定律求算∆H,

∆H= —∆H1 + ∆H2,带入相关数据可得答案。

(2)原电池电解质溶液中,阳离子移向正极;电解质为KOH溶液,所以正极反应为O2在H2O存在条件下得电子生成OH‾。

(3)①分析反应物,氨气、二氧化硫反应后再与磷酸反应,由磷酸的量不同可生成(NH4)3PO4或(NH4)2HPO4或NH4H2PO4

②氨水与SO2恰好完全反应生成(NH4)2SO3,水解显碱性。

③因为②中溶液显碱性,所以通入SO2可中和OH‾,使溶液显中性;根据电荷守恒可知:[NH4+]+[H+]=[OH‾]+2[SO32‾]+[HSO3‾],溶液中性[H+]=[OH‾],得[NH4+]=2[SO32‾]+[HSO3‾],所以[NH4+]/[SO32‾]>2。

(4)根据信息找出反应物和生成物,配平可得离子方程式。

1
题型:填空题
|
填空题

科学家利用太阳能分解水生成的氢气在催化剂作用下   与二氧化碳反应生成甲醇,并开发出直接以甲醇为燃料的燃料电池。已知:H2(g)、CO(g)和CH3OH(1)的燃烧热△H分别为-285.8 kJ、一283.0 kJ和一726.5.kJ 。请回答下列问题:

(1)用太阳能分解10mol H2O(1)消耗的能量是________kJ.

(2)甲醇不完全燃烧生成一氧化碳和液态水的热化学方程式为:

__________________________________________________________________________.

(3)在容积为2L的密闭容器中,由CO2和H2合成甲醇,在其他条件不变的情况下,

考查温度对反应的影响,实验结果如下图所示(注:均大于300℃):

下列说法正确的是_______________(填序号)

①温度为时,从反应开始到反应达到平衡,生成甲醇的平均速率为:

②该反应在时的平衡常数比时的小

③该反应为放热反应

④处于A点的反应体系的温度从变到,达到平衡时增大

(4)在温度时,将1mol CO2和3mol H2充入一密闭恒容容器中,充分反应达到平衡后,若CO2的转化率为a,则此时容器内的压强与起始压强之比为___________。

(5)在直接以甲醇为燃料的燃料电池中,电解质溶液为酸性,负极的反应式为___________________;正极的反应式为_____________________________________.理想状态下,该燃料电池消耗lmol甲醇所能产生的最大电能为701.8kJ,则该燃料电池的理论效率为_______________(燃料电池的理论效率是指电池所产生的最大电能与燃料电池反应所能释放的全部能量之比)。

正确答案

(1)2 858

(2)CH3OH(1)+O2(g)===CO(g)+2H2O(1)  ΔH=-443.5 kJ/mol

(3) ③④ 

(4) 1-α/2

(5) CH3OH+H2O=CO2+6H+6e-   O2+6H+6e-=3H2O  96.6%

试题分析:(1)由H2(g)的燃烧热△H为-285.8kJ·mol-1知,1mol H2(g)完全燃烧生成1mol H2O(1)放出热量285.8kJ,即分解1mol H2O(1)为1mol H2(g)消耗的能量为285.8kJ,分解10mol H2O(1)消耗的能量为2858kJ。

(2)写出燃烧热的热化学方程式:

CO(g)+1/2O2(g)=CO2(g)    △H=-283.0kJ·mol-1           ①

CH3OH(1)+3/2O2(g)=CO2(g)+2 H2O(1) △H=-726.5kJ·mol-1           ②

用②-①得:CH3OH(1)+ O2(g)="CO(g)+2" H2O(1)    △H=-443.5kJ·mol-1

(3)根据题给图像分析可知,T2的反应速率大于T1,由温度升高反应速率增大可知T2>T1,因温度升高,平衡时CH3OH的物质的量减少,说明可逆反应CO2+3H2 CH3OH+H2O向逆反应方向移动,故正反应为放热反应,T1时的平衡常数比T2时的大,③、④正确,②错误。①中反应速率的单位错误,应为mol·min-1,①错误;选③④。

(4)利用化学平衡的三段模式法计算:

CO2 (g)+3H2(g)= CH3OH(g) +H2O(g)

起始  1        3       0        0

变化  a        3 a      a        a

平衡 1-a       3-3a     a        a

根据压强之比等于物质的量之比,则容器内的压强与起始压强之比为:(4-2a)/4=1-a/2

(5)燃料电池是原电池的一种,负极失电子,发生氧化反应;正极得电子,发生还原反应,在酸性介质中,甲醇燃料电池的负极反应式为CH3OH+H2O-6e-=CO2+6H,正极反应式为 O2+6H+6e-=3H2O。该电池的理论效率为消耗1mol甲醇所能产生的最大电能与其燃烧热之比,为702.1/726.5=96.6%。

1
题型:填空题
|
填空题

(I)下图是工业生产硝酸铵的流程。

(1)吸收塔C中通入空气的目的是                           。A、B、C、D四个容器中的反应,属于氧化还原反应的是         (填字母)。

(2)已知:4NH3(g) + 3O2(g) = 2N2(g) +6H2O(g)    △H =-1266.8kJ/mol

N2(g) + O2(g) = 2NO(g)     △H =" +180.5" kJ/mol

写出氨高温催化氧化的热化学方程式:                                                          

(II)某合作小组同学将铜片加入稀硝酸,发现开始时反应非常慢,一段时间后反应速率明显加快。该小组通过实验探究其原因。

(3)该反应的离子方程式为___________________________________________________。

(4)提出合理假设。该实验中反应速率明显加快的原因可能是_____________________。

A.反应放热导致温度升高           B.压强增大

C.生成物有催化作用              D.反应物接触面积增大

(5)初步探究。测定反应过程中溶液不同时间的温度,结果如下表:

 

结合实验目的和表中数据,你得出的结论是__________________________________。

(6)进一步探究。查阅文献了解到化学反应的产物(含中间产物)可能对反应有催化作用,请完成以下实验设计表并将实验目的补充完整:

 

正确答案

(I)(1)使NO全部转化成HNO3 (或提供O2氧化NO)(2分); ABC(2分)(少1个扣1分,多1个没有分)

(2)4NH3(g)+5O2(g)4NO(g)+6H2O(g)  △H=-905.8kJ/mol(3分)

(II)(3)3Cu+8H+2NO3=3Cu2+2NO↑+4H2O (3分)

(4)AC(2分)

(5)温度不是反应速率明显加快的主要原因。(2分)

(6)(2分)

 

试题分析:(1)在整个生产流程中,第一次通入空气为了提高氨气的转化率,第二次是为了提高一氧化氮生成硝酸的转化率;整个流程中涉及的反应方程式有:①N2+3H2⇌2NH3②4NH3+5O=4NO+6H2O③2NO+O2═2NO2④3NO2+H2O═2HNO3+NO

⑤4NO2+O2+H2O═4HNO3⑥NH3+HNO3═NH4NO3,其中①②③④⑤属于氧化还原反应,即ABC属于氧化还原反应。

(2)氨高温催化氧化的热化学方程式可由①+2×②可得4NH3(g)+5O2(g)= 4NO(g)+6H2O(g),所以△H=-1266.8kJ/mol+2×180.5 kJ/mol=-905.8kJ/mol

(3)铜与稀硝酸反应的离子方程式:3Cu+8H+2NO3 = 3Cu2+2NO↑+4H2

(4)影响化学反应速率的因素有压强、浓度、温度、催化剂、接触面积等,但是在铜与稀硝酸的反应中,压强不影响,硝酸的浓度随反应进行减小,铜的接触面积也减小,因此浓度、接触面积都不会加快反应速率;但是金属与酸的反应是放热反应,所以有可能是温度升高加快了反应速率,也有可能是生成物具有催化作用,生成的物质作催化剂加快了反应,故选AC。

(5)从表格中数据可知反应的80min中温度升高不多,因此温度对反应速率影响不大,不是主要因素。

(6)排除了温度因素后,探究生成物对反应的催化作用,所以生成物中或中间产物中可能有催化作用的是Cu2和亚硝酸根,所以控制变量进行探究,实验①和②探究Cu2的影响,实验①和③探究亚硝酸根的影响。

1
题型:简答题
|
简答题

I.甲醇是一种优质燃料,可制作燃料电池。工业上可用下列两种反应制备甲醇:

已知:CO(g) + 2H2(g)  CH3OH(g)  ΔH1

CO2(g) + 3H2(g)  CH3OH(g)  +  H2O(g)   ΔH2   

2H2(g)+ O2(g)=2H2O(g)   ΔH3

则2CO(g)+O2(g)=2CO2(g) 的反应热ΔH=____ ___(用ΔH1、ΔH2、ΔH3表示)。

II.工业上可利用“甲烷蒸气转化法生产氢气”,反应为:CH4(g)+H2O(g)CO(g)+3H2(g)。

已知温度、压强和水碳比[n(H2O)/ n(CH4)]对甲烷平衡含量的影响如下图:

图1(水碳比为3)                        图2(800℃)

(1)温度对该反应的反应速率和平衡移动的影响是                            

(2)其他条件不变,请在图2中画出压强为2 MPa时,CH4平衡含量与水碳比之间关系曲线。(只要求画出大致的变化曲线)

(3)已知:在700℃,1MPa时,1mol CH4与1mol H2O在1L的密闭容器中反应,6分钟达到平衡,此时CH4的转化率为80%,求这6分钟H2的平均反应速率和该温度下反应的平衡常数是多少?(写出计算过程,结果保留小数点后一位数字。) 

III.某实验小组设计如图a所示的电池装置,正极的电极反应式为____                     ____。

正确答案

(16分)

I.2ΔH1-2ΔH2+ΔH3(3分)

II.(1)其他条件不变,升高温度,反应速率加快,平衡向正反应方向移动。(或描述降温的变化,3分)

(2)如下图(2分)(形状1分,标注1分)

(3)计算过程为:(格式2分,速率1分,常数2分,共5分)

CH4(g)+H2O(g)    CO(g)+3H2(g) 

起始浓度(mol/L) 1      1              0      0

变化浓度(mol/L)0.8     0.8            0.8     2.4

平衡浓度(mol/L)0.2     0.2            0.8     2.4

  

(平衡常数没写单位不扣分)

III.O2 + 2H2O + 4e=4OH(3分)

试题分析:I.先将4个热化学方程式依次编号为①②③④,再观察、比较后可得:①×2—②×2+③=④,由盖斯定律可知,④的焓变=①的焓变×2—②的焓变×2+③的焓变=2ΔH1-2ΔH2+ΔH3;II.(1)先读图1,发现在1Mpa或2Mpa、600℃~1000℃时,随着温度的升高,甲烷平衡含量均逐渐减小,说明平衡向正反应方向移动;再根据温度对化学反应速率和化学平衡的影响规律,当其他条件不变时,升高温度,反应速率加快,平衡向吸热反应方向或正反应方向移动,则甲烷蒸气转化为氢气的正反应是吸热反应;(2)画图要点:①甲烷蒸气转化为氢气的正反应是气体体积增大的反应,当温度和水碳比保持不变时,增大压强,平衡向气体体积减小方向或逆反应方向移动,则甲烷平衡含量增大,因此2MPa时甲烷平衡含量与水碳比之间关系曲线一定高于1MPa时甲烷平衡含量与水碳比之间关系曲线;②当温度和压强保持不变时,随着水碳比的增大,甲烷平衡含量逐渐减小;(3)依题意可知该可逆反应中各组分起始、变化、平衡浓度,则:

CH4(g)+H2O(g)CO(g)+3H2(g) 

起始浓度(mol/L)    1      1        0      0

变化浓度(mol/L)   0.8     0.8      0.8     2.4

平衡浓度(mol/L)   0.2     0.2      0.8     2.4

根据平均反应速率的定义式,v(H2)===0.4mol/(L•min)

根据化学平衡常数的定义式,K==mol2/L2≈276.5 mol2/L2

III.甲醇燃料电池中正极的主要反应物为氧气,氧元素由0降为—2价,则1个氧气分子得到4个电子,在KOH溶液中只能用氢氧根离子使反应物和产物的电荷守恒,则O2+4e→4OH;左边比右边少4个H、2个O原子,根据氢、氧原子个数守恒可知反应物中还有2H2O,则正极反应式为O2 +4e+2H2O =4OH

1
题型:填空题
|
填空题

CO2和CH4是两种重要的温室气体,通过CH4和CO2反应制造更高价值化学品是目前的研究目标。

(1)250℃时,以镍合金为催化剂,向4 L容器中通入6 mol CO2、6 mol CH4,发生如下反应:CO2(g)+CH4(g) 2CO(g)+2H2(g)。平衡体系中各组分体积分数如下表:

 

①此温度下该反应的平衡常数K=     

②已知:CH4(g)+2O2(g)=CO2(g)+2H2O(g) △H="-890.3" kJ·mol-1

CO(g)+H2O (g)=CO2(g)+H2 (g) △H="2.8" kJ·mol-1

2CO(g)+O2(g)=2CO2(g) △H="-566.0" kJ·mol-1

反应CO2(g)+CH4(g)2CO(g)+2H2(g) 的△H=     

(2)以二氧化钛表面覆盖Cu2Al2O4为催化剂,可以将CO2和CH4直接转化成乙酸。

①在不同温度下催化剂的催化效率与乙酸的生成速率如图所示。250~300℃时,温度升高而乙酸的生成速率降低的原因是   

②为了提高该反应中CH4的转化率,可以采取的措施是   

③将Cu2Al2O4溶解在稀硝酸中的离子方程式为     

(3)以CO2为原料可以合成多种物质。

①聚碳酸酯是一种易降解的新型合成材料,它是由加聚而成。写出聚碳酸酯的结构简式:   

②以氢氧化钾水溶液作电解质进行电解,CO2在铜电极上可转化为甲烷,该电极反应方程式为     

正确答案

(1)①64    ②+247.3 kJ·mol-1

(2)①温度超过250℃时,催化剂的催化效率降低

②增大反应压强或增大CO2的浓度

③3Cu2Al2O4+32H++2NO3=6Cu2++ 6Al3++2NO↑+16 H2O

(3)①    ②CO2+8e+6H2O=CH4+8OH

试题分析:(1)①设消耗CH4物质的量为x,则平衡时CH4、CO2、CO、H2物质的量分别为(6-x)mol、(6-x)mol、2xmol、2xmol,由CH4体积分数得,解得x=4。所以K= = =64。②由盖斯定律得△H=(-890.3+2.8×2+566×2) kJ·mol-1=+247.3kJ·mol-1。(2)①温度升高,催化剂活性降低。②CO2(g)+CH4(g)CH3COOH(l),增大压强或增大二氧化碳气体浓度,可以提高甲烷转化率。③Cu2Al2O4中Cu为+1价,Cu2Al2O4与硝酸生成硝酸铜、硝酸铝、NO和水,根据得失电子相等、电荷守恒、质量守恒配平。(3)①CO2发生加聚反应时,断裂C=O双键中的键,聚合得。②CO2在铜电极上可转化为甲烷,C的化合价由+4降为-4,发生还原反应,由电子和电荷守恒、质量守恒写出电极反应式。

1
题型:简答题
|
简答题

氢是一种理想的绿色清洁能源,氢气的制取与储存是氢能源利用领域的研究热点。利用FeO/Fe3O4循环制氢,已知:

H2O(g)+3FeO(s)Fe3O4(s)+4H2(g)  △H=akJ/mol (I)

2Fe3O4(s)6FeO(s)+O2(g)   △H=bkJ/mol  (II)

下列坐标图分别表示FeO的转化率(图-1 )和一定温度时,H2出生成速率[细颗粒(直径0.25 mm),粗颗粒(直径3 mm)](图-2)。

(1)反应:2H2O(g)=2H2(g)+O2(g)  △H=          (用含a、b代数式表示);

(2)上述反应b>0,要使该制氢方案有实际意义,从能源利用及成本的角度考虑,实现反应II可采用的方案是:                                           

(3)900°C时,在两个体积均为2.0L密闭容器中分别投人0.60molFeO和0.20mol H2O(g)甲容器用细颗粒FeO、乙容器用粗颗粒FeO。

①用细颗粒FeO和粗颗粒FeO时,H2生成速率不同的原因是:               

②细颗粒FeO时H2O(g)的转化率比用粗颗粒FeO时H2O(g)的转化率           (填“大”或“小”或“相等”);

③求此温度下该反应的平衡常数K(写出计箅过程,保留两位有效数字)。

(4)在下列坐标图3中画出在1000°C、用细颗粒FeO时,H2O(g)转化率随时间变化示意图(进行相应的标注)。

正确答案

(16分)(1)(2a+b)kJ/mol(2分)(无kJ/mol或“2a+b kJ/mol”扣1分,其他不给分)

(2)用廉价的清洁能源供给热能(2分)(答用“太阳能”、“风能”、“地热能”、“生物能”、“核能”供给热能给3分;答“加热”、“升高温度”等均不给分)

(3)①细颗粒FeO表面积大,与H2的接触面积大,反应速率加快(3分)  (“增大接触面积,加快反应速率”、“接触面积越大,反应速率越快”等合理表述给3分;答“增大反应物浓度”、“FeO的量增加,反应速率加快”给1分);   ②相等(2分)(答“等于”、“=”给1分)

③(4分)解:900℃时,达到平衡时FeO转化的量为:n(FeO)=0.60mol×40%=0.24mol

H2O(g)+3FeO(s)Fe3O4(s)+4H2(g)

起始物质的量(mol)   0.20     0.60        0       0

变化物质的量(mol)  0.080     0.24      0.080   0.080

平衡物质的量(mol)   0.12     0.36       0.080   0.080       (2分)

由于固体物质的浓度是常数,不能写入平衡常数表达式,气体物质的浓度可以变化,根据c=n/V可求平衡时氢气和水蒸气的物质的量浓度,则K====0.67(2分)

(4)(3分)

试题分析:(1)先对已知热化学方程式编号为①②,观察发现①×2+②可得,2H2O(g)=2H2(g)+O2(g),其焓变=①的焓变×2+②的焓变=(2a+b)kJ/mol;(2)b>0,说明反应II是吸热反应,可用用廉价的清洁能源供给热能或用“太阳能”、“风能”、“地热能”、“生物能”、“核能”供给热能;(3)①FeO是反应I中的固体反应物,细颗粒FeO表面积大,与H2的接触面积大,反应速率加快(或“增大接触面积,加快反应速率”、“接触面积越大,反应速率越快”等);②由于固体物质浓度是常数,FeO的用量和浓度保持不变,将粗颗粒FeO改为细颗粒FeO,只能加快反应速率,不能使平衡移动,因此H2O(g)的平衡转化率不变或相等;③解:900℃时,达到平衡时FeO转化的物质的量量为:n(FeO)=0.60mol×40%=0.24mol,则:

H2O(g)+3FeO(s)Fe3O4(s)+4H2(g)

起始物质的量(mol)   0.20     0.60        0       0

变化物质的量(mol)  0.080     0.24      0.080   0.080

平衡物质的量(mol)   0.12     0.36       0.080   0.080

由于固体物质的浓度是常数,不能写入平衡常数表达式,气体物质的浓度可以变化,根据c=n/V可求平衡时氢气和水蒸气的物质的量浓度,则K====0.67;

(4)观察图1可得:随着温度的升高,FeO的平衡转化率减小,前者导致平衡向吸热方向移动,后者说明平衡向逆反应方向移动,因此逆反应是吸热反应,则反应I的正反应是放热反应;其他条件保持不变时,900℃→1000℃就是升高温度,既能加快反应速率,又能使平衡向逆反应方向移动,则H2O(g)的转化率由0逐渐增大,知道达到平衡,1000℃时达到平衡的时间比900℃时少,1000℃时H2O(g)的平衡转化率比900℃时小,由此可以画出水蒸气的转化率随温度变化的示意图。

1
题型:填空题
|
填空题

已知:①溶液中CrO42—显黄色,Cr2O72-显橙红色

②PbCrO4难溶于水,也难溶于强酸

③H+(aq)+OH-(aq)=H2O(l); ΔH=" —a" KJ/mol

3Cl2(g)+2Cr3+(aq)+16OH-(aq)=2CrO42-(aq)+6Cl-(aq)+8H2O(l);ΔH="—b" KJ/mol

2CrO42-(aq)+2H+(aq)Cr2O72-(aq)+H2O(l);ΔH="—c" KJ/mol

平衡常数K=9.5×104   (上述a、b、c均大于0)

对上述反应⑤,取50mL溶液进行试验,部分测定数据如下:

 

试回答下列问题:

(1)0.02s到0.03s之间用Cr2O72-表示该反应的平均反应速率为               

下列说法正确的(  )

A、0.03s时V正(CrO42—)=2V逆(Cr2O72—

B、溶液pH值不变说明该反应已达平衡状态

C、溶液中c(CrO42—):c(Cr2O72—)=2:1时该反应已达平衡状态

D、反应放热2.5×10-3c KJ时CrO42—的转化率为50%

E、升温该反应平衡常数变大

F、0.04s时加入足量的Pb(NO3)2 可使溶液由橙色变为黄色

(3)0.03s时溶液的pH=         

(4)已知酸性条件下Cr2O72—将Cl-氧化为Cl2,本身被还原为Cr3+为放热反应,试写出该反应的热化学方程式:                            

正确答案

(1)4×10-2mol/(L∙S);(2)ABD;(3)1;

(4)Cr2O72- +6Cl-+14H+=3Cl2+2Cr3++7H2O ΔH=(c+b-16a)KJ/mol

试题分析:CrO42—的物质的量变化5.4×10-4- 5.0×10-4= 4.0×10-5 mol,用CrO42-表示的速率是8×10-2 mol/(L∙S),依CrO42-(aq)+H+(aq)Cr2O72-可知,用Cr2O72—表示的速率是4×10-2 mol/(L∙S) mol/(L∙S)

0.03s时,CrO42—有5.4×10-4- 5.0×10-4= 4.0×10-5 mol转变成Cr2O72—,Cr2O72—增加4.0×10-5 mol,即共为4.73×10-3+4.0×10-5 mol=4.75×10-3mol,所以0.03s时是平衡状态;此时V正(CrO42—)=2V逆(Cr2O72—)。A对。溶液pH值不变说明H+浓度不变,该反应已达平衡状态;B对。平衡是c(CrO42—):c(Cr2O72—)= 5.0×10-4: 4.75×10-3,不是2:1,C错。反应放热2.5×10-3c KJ时,CrO42—转化5.0×10-3 mol ,CrO42—的转化率为5.0×10-3 mol÷0.01mol =50%,D正确。该反应时放热反应,升温该反应平衡常数变小,E错误。0.04s时是平衡状态,由于PbCrO4难溶于水,也难溶于强酸,加入足量的Pb(NO3)2 可减小CrO42—浓度,使平衡左移,溶液由橙色变为黄色,最后为无色,F错误。平衡常数K=9.5×10可以算出H+浓度是0.1mol/(L,pH= 1;(1)H+(aq)+OH-(aq)=H2O(l); ΔH=" —a" KJ/mol

(2)3Cl2(g)+2Cr3+(aq)+16OH-(aq)=2CrO42-(aq)+6Cl-(aq)+8H2O(l);ΔH="—b" KJ/mol

(3)2CrO42-(aq)+2H+(aq)Cr2O72-(aq)+H2O(l);ΔH="—c" KJ/mol(1) ×16-(2)- (3)得:

Cr2O72- +6Cl-+14H+=3Cl2+2Cr3++7H2O ΔH=(c+b-16a)KJ/mol

1
题型:填空题
|
填空题

(14分)研究CO2的利用对促进低碳社会的构建具有重要的意义。

(1)已知石墨的标准燃烧热为y kJ·mol1,1.2g石墨在1.68L(标准状况)氧气中燃烧,至反应物耗尽,放出x kJ热量。则石墨与氧气反应生成CO的热化学方程式为     

(2)高温时,用CO还原MgSO4可制备高纯MgO。

①750℃时,测得气体中含等物质的量SO2和SO3,此时反应的化学方程式是     

②由MgO可制成“镁—次氯酸盐”燃料电池,其装置示意图如图1,该电池反应的离子方程式为          。    

         

图1                 图2                 图3

(3)二氧化碳合成甲醇是碳减排的新方向,将CO2转化为甲醇的热化学方程式为:

CO2(g) +3H2(g)  CH3OH(g) +H2O(g) △H

①该反应的平衡常数表达式为K=            

②取五份等体积CO2和H2的混合气体(物质的量之比均为1∶3),分别加入温度不同、容积相同的恒容密闭容器中,发生上述反应,反应相同时间后,测得甲醇的体积分数φ(CH3OH)与反应温度T的关系曲线如图2所示,则上述CO2转化为甲醇反应的ΔH         (填“>” “<”或“=”)0。

③在两种不同条件下发生反应,测得CH3OH的物质的量随时间变化如图3所示,曲线I、Ⅱ对应的平衡常数大小关系为K      K(填“>” “<”或“=”)。

④一定温度下,在容积相同且固定的两个密闭容器中,按如下方式投入反应物,一段时间后达到平衡。

 

若甲中平衡后气体的压强为开始时的0.8倍,要使平衡后乙与甲中相同组分的体积分数相等,且起始时维持反应逆向进行,则c的取值范围为        

正确答案

(1)C(石墨) +1/2O2(g) = CO(g)  △H 2=" -(20x-y)" kJ·mol1(2分)

(2)①2MgSO4 + CO ="====" 2MgO + SO2 + CO2 + SO3(2分)。

②Mg + ClO- + H2O = Cl- + Mg(OH)2(2分)。

(3)① (2分)   

②<    (2分)

③>   (2分)

④0.4< c≤1     (2分)

试题分析:(1)该反应式可由C(石墨)+O2(g)=CO2(g);△H=y kJ·mol1,和C(石墨) +1/2O2(g) = CO(g);此反应碳过量,氧气不足,所以只反应了1.68/22.4=0.075mol,而1mol的反应放热应该为x*(1.5/0.075)=20x;再根据盖斯定理,△H 2="-(20x-y)" kJ·mol1,最终答案为C(石墨) +1/2O2(g) = CO(g)  △H 2=" -(20x-y)" kJ·mol1;(2)①根据电子得失守恒,确定硫酸镁与二氧化硫和三氧化硫的计量数,再写方程。2MgSO4 + CO ="====" 2MgO + SO2 + CO2 + SO3。②先可以从图中看出得失电子的离子,再确定正负极的电极方程式,最后写总反应式:Mg + ClO- + H2O = Cl- + Mg(OH)2。(3)①根据公式可以写出:,②由图二可知,ΔH<0,该反应正反应是放热反应,温度升高,反应速率和限度均会增大,但是温度升高到一定程度,反应向吸热反应即逆反应方向的趋势越来越大,使得甲醇的体积分数φ(CH3OH)反而减小。③根据图像可知,I的甲醇的物质的量大,转化率高,所以在计算时,平衡常数的公式中,平衡常数大小关系为K>K。④根据化学平衡反应进行计算如下:

CO2(g) +3H2(g)  CH3OH(g) +H2O(g)

始   1mol   3mol         0 mol      0 mol

变   x mol  3x mol       x mol      x mol

终   1-x    3-3x         x          x

由于压强是原来的0.8 ,所以[(1-x)+(3-3x)+x+x]/4=0.8算得x=0.4mol,根据等体积的等效平衡,各物质的量相同才可以,所以c的最大值是1mol,而保持平衡一开始向逆方向移动,所以c大于0.4mol。

点评:本题综合热化学方程式的书写,盖斯定理和化学平衡状态的判断和计算,整体难度不大,计算也是使用较常规的三段式的方法,关键在于抓住等体积时等效平衡需要物质的量与原体系相同,两者才等效。

1
题型:填空题
|
填空题

生物质能是一种洁净、可再生能源。生物质气(主要成分为 CO、CO2、H2等)与H2混合,催化合成甲醇和二甲醚(CH3OCH3)及许多烃类物质等,是生物质能利用的方法之一.

(1)已知碳的气化反应在不同温度下平衡常数的对数值(lgK)如下表:

反应:CO(g)+H2O(g)CO2(g)+H2(g),该反应的△H________0(选填:“>”、“<”、“=”);在900K时,该反应平衡常数的对数值(lgK)=_____________.

(2)甲醇是一种重要的能源和化工原料,工业上合成甲醇的反应为:CO+2H2⇌CH3OH.现已知:H2(g)、CO(g)、CH3OH(l)的燃烧热ΔH分别为-285.8KJ/mol、-283.0KJ/mol和-726.5KJ/mol。则:CH3OH不完全燃烧生成CO和液态H2O的热化学反应方程式                        .

(3)在一定温度、压强和催化条件下,工业上用CO和H2反应生成二甲醚,同时产生一种参与大气循环的无机物。则该反应的化学反应方程式为:                        

(4)下图左为绿色电源“二甲醚燃料电池”的工作原理示意图.a电极上发生反应的电极反应式为                                  .

(5)连接下图右装置的电源为(4)问中的二甲醚燃料电池。接通电源一段时间后,观察到装置中电解质溶液颜色由无色变为蓝色,并逐渐加深。则该装置中的Cu电极应与二甲醚燃料电池中      电极(填a或b)相连。通电时发生反应的总的离子反应方程式为:                    .

正确答案

(1)<;   0.36 (2)CH3OH(l)+O2(g)=CO(g)+2H2O(l);△H=-443.5KJ/mol

(3)3CO+3H2 =(CH32O+CO2或者2CO+4H2 =(CH32O+ H2O,

(4)(CH32O-12e-+3H2O=2CO2+12H+(5)b   Cu+2H+Cu2++H2

试题分析:K1="{" C(CO)·C(H2)} /C(H2O);K2=" {" C(CO2)·C2(H2)} /C2(H2O) ②-①整理得:CO(g)+H2O(g) CO2(g)+H2(g),它的平衡常数为:K="{" C(CO2)·C(H2)} /{ C(CO) ·C(H2O)}.="K2/K1." K越大,lgK就越大。升高温度K减小,说明升高温度化学平衡向逆反应方向移动。根据化学平衡移动原理:升高温度,化学平衡向吸热反应方向移动。逆反应是吸热反应。所以正反应为放热反应。所以△H<0.在900K时,该反应平衡常数的对数值lgK ="lgK2/K1=lgK2-lgK1=-0.03+0.39=0.36." (2)由题意可写出CO、CH3OH燃烧的热化学方程式①CO(g)+(1/2)O2(g)=CO2(g) △H=-283.0KJ/mol;②CH3OH(l)+(3/2)O2(g)=CO2(g)+2H2O.②-①得:CH3OH(l)+O2(g)=CO(g)+2H2O(l);△H=-443.5KJ/mol。(3)根据题意可得反应的化学方程式:3CO+3H2 =(CH32O+CO2或者2CO+4H2 =(CH32O+ H2O。(4)在燃料电池中,通入燃料的电极作负极,通入氧气的电极作正极。a电极及负极上发生反应的电极反应式是:(CH32O-12e-+3H2O=2CO2+12H+。(5)在电解池中观察到装置中电解质溶液颜色由无色变为蓝色,并逐渐加深。说明Cu失去了电子。Cu电极作阳极。二甲醚燃料电池中b电极(即正极)相连。通电时发生反应的总的离子反应方程式为:Cu+2H+Cu2++H2↑。

1
题型:填空题
|
填空题

Ⅰ:利用水煤气合成二甲醚的三步反应如下:

①2H(g)+CO(g)CHOH(g);ΔH=-90.8 kJ·mol

②2CHOH(g)CHOCH(g)+HO(g);ΔH=-23.5 kJ·mol

③CO(g)+HO (g)CO(g)+H(g);ΔH=-41.3 kJ·mol

总反应:3H(g)+3CO(g)CHOCH(g)+CO(g)的ΔH=__________:

Ⅱ:如图甲、乙是电化学实验装置。

(1)若甲、乙两烧杯中均盛有饱和NaCI溶液。

①甲中石墨棒上的电极反应式__________,电子的移动方向为________;

②乙中总反应的离子方程式为__________,Cl移向__________电极(填Fe或C);

③将湿润的淀粉-KI试纸放在乙烧杯上方,发现试纸先变蓝后褪色,这是因为过量的Cl氧化了生成的I。若反应中Cl和I的物质的量之比为5:1,且生成两种酸,该反应的化学方程式为:_____________________;

(2)若甲、乙两烧杯中均盛有CuSO溶液。

①甲中铁棒上的电极反应式为:______________________;

②如果起始时乙中盛有200 mL pH=5的CuSO溶液(25℃),一段时间后溶液的pH变为1,若要使溶液恢复到电解前的状态,可向溶液中加入_________(填写物质的化学式)_________g。

正确答案

Ⅰ:-246.4kJ/mol

Ⅱ:(1)①O+2HO+4e=4OH,铁经导线移向石墨。

②2Cl+2HO2OH+H↑+Cl↑,     C

③5Cl+I+6HO=10HCl+2HIO

(2)①Fe-2e=Fe     ②CuO(或CuCO)     0.8(或1.24)

试题分析:I:根据盖斯定律,观察目标方程式可知,①×2+②+③,即得到3H2(g)+3CO(g)CH3OCH3(g) + CO2 (g),故△H=2△H1+△H2+△H3=-246.4kJ·mol -1

II(1)①根据装置可知甲是原电池,乙是电解池。由于氯化钠溶液显中性,所以发生吸氧腐蚀,石墨是正极,氧气得到电子,方程式为O2+2H2O+4e=4OH,电子由负极出正极入,所以电子由铁经导线移向石墨。

②根据乙中电子流向可知,石墨和电源的正极相连,作阳极,溶液中的氯离子放电。铁和电源的负极相连,作阴极,溶液中的氢离子放电。所以总反应式为2Cl+2H2O2OH+H2↑+Cl2↑,阴离子向阳极移动,所以向石墨极移动。

③5mol氯气得到5mol×2=10mol电子,所以根据电子得失守恒可知,单质碘得到10mol电子,因此碘的化合价从0价升高到+5价,所以氧化产物是HIO3。因此方程式为5Cl2+I2+6H2O===10HCl+2HIO3

(2)①铁是活泼的金属,作负极,所以电极反应式为Fe-2e=Fe2

②乙中阳极是OH放电,生成氧气。阴极是铜离子放电,生成铜,总反应式为2CuSO4+2H2O2H2SO4+2Cu+O2↑。反应中生成氢离子的物质的量是0.2L×0.1mol/L=0.02mol,所以根据方程式可知生成铜是0.1mol,因此要使溶液恢复到电解前的状态,可向溶液中加入0.01mol氧化铜或0.01mol碳酸铜,其质量方便是0.8g、1.24g。

点评:本题综合性强,在解决原电池电解池的问题上时,一定要根据最基本的知识点进行判断,不容易出错。

1
题型:填空题
|
填空题

新近出版的《前沿科学》杂志刊发的中国环境科学研究院研究员的论文《汽车尾气污染及其危害》,其中系统地阐述了汽车尾气排放对大气环境及人体健康造成的严重危害。目前降低尾气的可行方法是在汽车排气管上安装催化转化器。NO和CO气体均为汽车尾气的成分,这两种气体在催化转换器中发生反应:2CO(g)+2NO(g)N2(g)+2CO2(g) △H=-a kJ·mol-1

(1)CO2的电子式为          

(2)已知2NO(g)+O2(g)=2NO2(g) △H=-b kJ·mol-1;CO的燃烧  热△H=-c kJ·mol-1。书写在消除汽车尾气中NO2的污染时,NO2与CO的可逆反应的热化学反应方程式        

(3)在一定温度下,将2.0mol NO、2.4mol气体CO通入到固定容积为2L的容器中,反应过程中部分物质的浓度变化如图所示:

①有害气体NO的转化率为          ,0~15min  NO的平均速率v(NO)=          

②20min时,若改变反应条件,导致CO浓度减小,则改变的条件可能是    (选填序号)。

a.缩小容器体积      b.增加CO的量     c.降低温度      d.扩大容器体积

③若保持反应体系的温度不变,20min时再向容器中充入NO、N2各0.4mol,化学平衡将   移动(选填“向左”、“向右”或“不”), 移动后在达到平衡时的平衡常数是   

正确答案

(1) (1分)

(2)4CO(g)+2NO2(g)N2(g)+4CO2(g)  △H="-a+b-2c" kJ·mol-1。 (3分,方程式及状态2分,焓变1 分)

(3)①40% (2分)    0.027mol/(L·min)   (2分)   ②c d (2分)   ③向左 (2分)

5/36  L/mol或0.14 L/mol(2分)

试题分析:(1)CO2的电子式

(2)2CO(g)+2NO(g)N2(g)+2CO2(g) △H=-a kJ·mol-1 

2NO(g)+O2(g)=2NO2(g) △H=-b kJ·mol-1   

CO(g)+1/2O2(g)CO2(g)   △H=-c kJ·mol-1  

由①-②+2×③得 4CO(g)+2NO2(g)N2(g)+4CO2(g)  △H="-a+b-2c" kJ·mol-1

(3)①

2CO(g)+2NO(g)N2(g)+2CO2(g)

起始浓度(mol·L-1)      1.2      1          0       0

转化浓度(mol·L-1)      0.4     0.4        0.2       0.4

平衡浓度(mol·L-1)      0.8     0.6        0.2       0.4              

有害气体NO的转化率为×100%=40%;0~15min  NO的平均速率v(NO)==0.027mol/(L·min)。化学平衡常数K==0.14。

②a.缩小容器体积,CO浓度增大,所以错误。

b.增加CO的量,CO浓度增大,所以错误。

c.降低温度,正向移动,CO浓度减小,所以正确。

d.扩大容器体积,CO浓度减小,所以正确。

所以选c d。 

③20min时再向容器中充入NO、N2各0.4mol,此时各成分的浓度变为

2CO(g)+2NO(g)N2(g)+2CO2(g)

瞬时浓度(mol·L-1)       0.8       0.6        0.4      0.6

Qc==0.625>0.14,所以逆向移动;化学平衡常数只和温度有关,温度不变,平衡常数不变,所以化学平衡常数还是L/mol或0.14 L/mol。

1
题型:填空题
|
填空题

乙醇是一种可燃性液体,按一定比例混合的乙醇汽油是一种新型清洁车用燃料,某科研机构研究利用CO2合成乙醇的方法:

(i)2CO2(g)+6H2(g) CH3CH2OH(g)+3H2O(g) ΔH1

原料气氢气

(ii)CH4(g)+H2O(g) CO(g)+3H2(g)   ΔH2

回答下列问题:

(1)使用乙醇汽油(汽油用戊烷代替)燃料时.气缸工作时进行的反应较多,写出燃烧产生有毒气体CO、NO的所有反应的化学方程式:________________________。

(2)反应(i)中能够提高氢气转化率的措施有____。

(3)利用CO合成乙醇是目前工业生产较为成熟的工艺。已知下列热化学方程式:

(iii)CO(g)+H2O(g) CO2(g)+H2(g)   ΔH3

写出以CO(g)与H2(g)为原料合成乙醇的热化学方程式:___________________(焓变用H1H3表示)。

(4)反应(ii)中的甲烷和水蒸气是在特定的催化剂表面上进行的,该反应在不同温度下的化学平衡常数如下表:

由此推知反应(ii)的焓变H2________0(填“>”、“=”或“<”)。某温度下,向容积为1 L的密闭容器中加入1 mol甲烷和1mol水蒸气,经过5h反应达到平衡状态,此时测得CH4的浓度变为0.5 mol/L。该温度下,反应(ii)的平衡常数K=__________________,反应开始至达到平衡时氢气的反应速率v(H2)=_________。

(5)机动车在改用乙醇汽油后,并不能减少氮氧化物的排放。使用合适的催化剂可使NO转化为氮气,实验测得NO转化为氮气的转化率随温度变化曲线如下图所示:

由图像可知,在没有CO情况下,温度超过775K,NO的转化率减小,造成这种现象的原因可能是___________________________;在NO和CO物质的量之比为1:1的情况下,应控制的最佳温度为__________________左右。

正确答案

(1)CH3CH2OH+2O22CO+3H2O ;2C5H12+11O210CO+12H2O  N2+O22NO

(2)A C D

(3)2CO(g)+4H2(g)=CH3CH2OH(g)+H2O(g) ΔH1+2ΔH3

(4)>  6.75  0.3mol/( L·h)

(5)NO分解反应是放热反应,达平衡后,温度升高,则平衡逆向移动   850K(810-880K均正确)

试题分析:(1)燃料CH3CH2OH、C5H12不完全燃烧会产生CO。其反应方程式为:CH3CH2OH+2O22CO+3H2O    2C5H12+11O210CO+12H2O在气缸内产生NO的方程式为:N2+O22NO。(2)反应(i)的正反应为气体体积减小的反应。所以要提高氢气转化率可以通过增大反应物CO2的浓度、减小生成物乙醇的浓度或增大压强等措施来实现。由于催化剂能同等倍数的改变正反应、逆反应的速率,所以平衡不发生移动。乙醇选项为ACD。(3)①+③×2,整理可得:2CO(g)+4H2(g)=CH3CH2OH(g)+H2O(g) ΔH1+2ΔH3。(4)由图像可以看出:升高温度,化学平衡常数增大。即:升高温度,化学平衡向正反应方向移动。根据平衡移动原理,升高温度,化学平衡向吸热反应方向移动。正反应方向为吸热反应。所以反应(ii)的焓变ΔH2>0。对于反应(ⅱ)在反应开始时,c(CH4)=1mol/L;c(H2O)="1mol/L." c(CO)= c(H2)=0.当反应达到平衡时,c(CH4)=" 0.5" mol/L;c(H2O)=" 0.5" mol/L, c(CO)=" 0.5" mol/L ;c(H2)=" 1.5" mol/L。所以化学平衡常数为:。从反应开始至达到平衡时氢气的反应速率v(H2)="Δc/Δt=1.5mol/L÷5h=0.3mol/(" L·h). (5)在没有CO情况下,温度超过775K,NO的转化率减小,造成这种现象的原因可能是NO分解反应是放热反应,达平衡后,温度升高,则平衡逆向移动,导致分解率降低。由图像可以看出在NO:CO=1:1时NO的转化率随温度的升高而增大。当温度在850K时NO的转化率最大。所以应控制的最佳温度为850K左右。

1
题型:简答题
|
简答题

一定条件下,通过下列反应可实现燃煤烟气中硫的回收:

2CO(g)+SO2(g)2CO2(g)+S(l)   △H

(1)已知2CO(g)+O2(g)= 2CO2(g)   △H1=—566kJ•mol—1

S(l) +O2(g)= SO2(g)   △H2=—296kJ•mol—1

则反应热ΔH=          kJ•mol1

(2)其他条件相同、催化剂不同时,SO2的转化率随反应温度的变化如图a。260℃时       (填Fe2O3、NiO或Cr2O3)作催化剂反应速率最快。Fe2O3和NiO作催化剂均能使SO2的转化率达到最高,不考虑价格因素,选择Fe2O3的主要优点是              

(3)科研小组在380℃、Fe2O3作催化剂时,研究了不同投料比[n(CO)∶n(SO2)]对SO2转化率的影响,结果如图b。请在答题卡坐标图中画出n(CO)∶n(SO2)="2∶1" 时,SO2转化率的预期变化曲线。

(4)工业上还可用Na2SO3溶液吸收烟气中的SO2:Na2SO3+SO2+H2O=2NaHSO3。某温度下用1.0mol•L1 Na2SO3溶液吸收纯净的SO2,当溶液中c(SO32)降至0.2mol•L1时,吸收能力显著下降,应更换吸收剂。

①此时溶液中c(HSO3)约为______mol•L1

②此时溶液pH=______。(已知该温度下SO32—+H+HSO3的平衡常数K="8.0" × 106 L•mol1,计算时SO2、H2SO3的浓度忽略不计)

正确答案

(16分)

(1)—270  (3分)  

(2)Cr2O3  (3分) Fe2O3作催化剂时,在相对较低温度可获得较高SO2的转化率,从而节约大量能源(3分)

(3)见下图 (3分)

(4)①1.6  (2分)  ②6  (2分)

试题分析:(1)观察热化学方程式之间的关系,发现已知第1个热化学方程式减去第2个热化学方程式时,能够约去O2(g)得到2CO(g)+SO2(g)2CO2(g)+S(l),根据盖斯定律,该反应热ΔH=△H1—△H2=—270kJ•mol1;(2)读图a可知,260℃时平衡转化率:Cr2O3> Fe2O3>NiO,由此推断Cr2O3作催化剂时反应速率最快;读图可知,Fe2O3和NiO作催化剂均能使SO2的转化率达到最高,当SO2的转化率相同时,反应温度:Fe2O32O3作催化剂时的主要优点是在相对较低温度可获得较高SO2的转化率,从而节约大量能源;(3)读图b可知,其他条件相同时,增大n(CO)∶n(SO2)的比值,就是增大CO或反应物浓度,既能增大反应速率,缩短达到平衡的时间,还使平衡向正反应反应方向移动,使SO2的转化率增大,由于图a中380℃时SO2的转化率最高,所以n(CO)∶n(SO2)的比值为2∶1变为3∶1时,SO2的平衡转化率基本上完全相同,只是达到平衡的时间缩短,由此可以在图b中画出有关温度对反应速率和平衡移动的影响图像;(4)依题意,Na2SO3、NaHSO3都是强电解质,可以推断反应物和生成物的起始浓度、变化浓度、更换试剂时浓度,则:

SO32—+SO2+H2O=2HSO3

起始浓度(mol/L)          1.0               0

变化浓度(mol/L)          0.8              1.6

更换试剂时浓度(mol/L)    0.2              1.6

则更换试剂时,c(HSO3)=1.6mol/L

由于SO32—+H+HSO3的平衡常数K= c(HSO3)/[ c(SO32—)• c(H+)],则c(H+)= c(HSO3)/[ c(SO32—)•K)],由于c(HSO3)=1.6mol/L,c(SO32—)=0.2mol/L,该温度下K="8.0" × 106 L•mol1,则c(H+)=1.6/(0.2×8.0 × 106) mol/L=10—6 mol/L;由于溶液的pH="—lg" c(H+)=—(—6)=6。

1
题型:填空题
|
填空题

能源短缺是人类社会面临的重大问题,利用化学反应可实现多种形式的能量相互转化。请回答以下问题:

(1)由气态基态原子形成1mol化学键释放的最低能量叫键能。从化学键的角度分析,化学反应的过程就是旧键断裂和新键的形成过程。已知反应N2(g)+3H2(g)2NH3(g)  △H=-93 kJ·mol-1。试根据表中所列键能数据,计算a 的数值为_______kJ/mol。

(2)甲醇是一种可再生能源,具有广泛的开发和应用前景。已知在常压下有如下变化: 

① 2CH3OH(l)+3O2(g)=2CO2(g)+4H2O(g)   ΔH =a kJ/mol

② H2O(g)=H2O(l)  ΔH =b kJ/mol

写出液态甲醇完全燃烧生成二氧化碳和液态水的热化学方程式:                     

(3)可利用甲醇燃烧反应设计一个燃料电池。如下图1,用Pt作电极材料,用氢氧化钾溶液作电解质溶液,在两个电极上分别充入甲醇和氧气。

①写出燃料电池正极的电极反应式                            。②若利用该燃料电池提供电源,与图1右边烧杯相连,在铁件表面镀铜,则铁件应是        极(填”A”或”B”);当铁件的质量增重6.4g时,燃料电池中消耗氧气的标准状况下体积为     L。

(4)如果模拟工业上离子交换膜法制烧碱的方法,那么可以设想用如图2装置电解硫酸钾溶液来制取氢气、氧气、硫酸和氢氧化钾(电解槽内的阳离子交换膜只允许阳离子通过,阴离子交换膜只允许阴离子通过)。

①该电解槽的阳极反应式为                  ,单位时间内通过阴离子交换膜的离子数与通过阳离子交换膜的离子数的比值为      

②从出口D导出的溶液是   (填化学式)。

正确答案

(14分)(1)391 (2分) 

(2)2CH3OH(l)+3O2(g)=2CO2(g)+4H2O(l); ΔH =(a +4b)kJ/mol(3分)(ΔH算错扣1分)

(3)①O2+2H2O+4e=4OH (2分) ;②B;(1分)  1.12 (2分)

(4)① 4OH-4e=2H2O+O2↑(或2H2O—4e= O2↑+4H+ )(2分);1:2(1分);② KOH(1分);

试题分析:(1)反应热就是断键吸收的能量和形成化学键所放出的能量的差值,所以该反应的反应热△H=945kJ/mol+3×436 kJ/mol-6a=-93 kJ/mol,解得a=391 kJ/mol。

(2)根据盖斯定律可知,①+②×4,即得到2CH3OH(l)+3O2(g)=2CO2(g)+4H2O(l),则该反应的ΔH=(a +4b)kJ/mol。

(3)①原电池中正极得到电子,所以氧气在正极通入。由于电解质是氢氧化钾溶液,所以正极电极反应式是O2+2H2O+4e=4OH

②在铁件表面镀铜,则铁件应是应该做阴极,因此和电源负极相连,即铁件应是B。铁件的质量增重6.4g,说明析出的铜应该是6.4g,物质的量是0.1mol,转移电子的物质的量是0.2mol,所以根据电子的得失守恒可知,消耗氧气的物质的量是0.2mol÷4=0.05mol,标准状况下的体积是1.12L。

(4)①惰性电极电解硫酸钾溶液,则阳极是OH放电,所以该电解槽的阳极反应式为4OH-4e=2H2O+O2↑。由于阴极是氢离子放电,所以根据电子的得失守恒可知,单位时间内通过阴离子交换膜的离子数与通过阳离子交换膜的离子数的比值为1:2。

②由于D周围是氢离子放电,所以产生大量的OH,因此从出口D导出的溶液是KOH。

点评:该题是中等难度的试题,试题贴近高考,综合性强,注重基础知识考查的同时,侧重能力的训练和解题方法的指导,有利于培养学生分析、归纳、总结问题的能力,也有助于提高学生的应试能力和学习效率。该题的关键是熟练掌握电化学原理,然后灵活运用即可。

下一知识点 : 化学反应速率和化学平衡
百度题库 > 高考 > 化学 > 化学反应与能量

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题