- 导数的运算
- 共219题
函数,若曲线
在点
处的切线与直线
垂直(其中
为自
然对数的底数).
25.若在
上存在极
值,求实数
的取值范围;
26.求证:当时,
.
正确答案
;
解析
因为,由已知
,所以
,得
.所以
,
,当
时,
,
为增函数,当
时,
,
为减函数.所以
是函数
的极大值点,又
在
上存在极值,所以
,
即,故实数
的取值范围是
.
考查方向
解题思路
第一问由切线与直线垂直得到切线斜率,再用导数的几何意义求出
,通过对
讨论,得到它存在极值的范围,找到
的取值范围;
正确答案
略;
解析
等价于
.
令,则
,
再令,则
,
因为,所以
,所以
在
上是增函数,
所以,所以
,所以
在
上是增函数,
所以时,
,故
.
令,
则
,
因为,所以
,所以
,所以
在
上是减函数.
所以时,
,
所以,即
.
考查方向
解题思路
第二问现将不等式等级变形,构造新函数,对新函数用导函数求最值
12.已知函数,当
时,函数
在
,
上均为增函数,则
的取值范围是( )
正确答案
解析
,方程
的判别式
(1)当时,
恒成立,所以
恒成立,符合题意,此时
;
(2)当时,
有两个不相等的实数根,由函数
在
,
上均为增函数可知,
的两个根一个小于等于-2,另一个大于等于1,所以
画出以a为x轴,b为y轴的坐标系,画出可行域为三角形,
,其中
表示过点(2,-2)和(a,b)的直线的斜率,由可行域知,当直线经过点(-1,-1)时,
最大为
,当直线过点(1,1)时,
最小为-3,所以
的取值范围是
,故选A选项。
考查方向
解题思路
1.先求导后判断导数的正负,2.当导数有正有负时转化为一元二次方程根的分布处理,接着转化为线性规划使得问题得以解决。
易错点
1.不知道题中的条件:函数在
,
上均为增函数如何处理2.不知道
表示什么。
知识点
已知函数.
25.讨论的单调性;
26.当时,若存在区间
,使
在
上的值域是
,求
的取值范围.
正确答案
(1)当时,
在
上为减函数;当
时,
在
上为减函数,在
上为增函数.
解析
(Ⅰ)函数的定义域是
,
,
当时,
,所以
在
上为减函数,
当时,令
,则
,当
时,
,
为减函数,
当时,
,
为增函数,
∴当时,
在
上为减函数;当
时,
在
上为减函数,在
上为增函数.
考查方向
解题思路
求导后根据a的范围讨论单调性即可;
易错点
问题中不讨论a的范围导致丢解;
正确答案
(2)
解析
(Ⅱ)当时,
,由(Ⅰ)知:
在
上为增函数,而
,∴
在
上为增函数,结合
在
上的值域是
知:
,其中
,
则在
上至少有两个不同的实数根,
由得
,
记,
,则
,
记,则
,
∴在
上为增函数,即
在
上为增函数,
而,∴当
时,
,当
时,
,
∴在
上为减函数,在
上为增函数,
而,
,当
时,
,故结合图像得:
,∴
的取值范围是
考查方向
解题思路
先利用第(1)问的结论构造函数后做函数
的单调情况即可。
易错点
不会构造函数导致后面无法入手。
已知函数.
27. 判断函数在
上的单调性;
28. 若恒成立, 求整数
的最大值;
29.求证:.
正确答案
(1)上是减函数;
解析
(Ⅰ)
上是减函数
考查方向
解题思路
直接求导后判断出后即可得到答案;
易错点
导后的函数不会变形为,导致不会判断其正负;
正确答案
3;
解析
(Ⅱ),即
的最小值大于
.
令,则
上单调递增,
又 ,
存在唯一实根
, 且满足
,
当时,
当
时,
∴,故正整数
的最大值是3
考查方向
解题思路
先分离参数后变为,下面求函数
的最小值即可;
易错点
无
正确答案
(3)略
解析
(Ⅲ)由(Ⅱ)知,∴
-
令, 则
∴
∴
考查方向
解题思路
根据第(2)问放缩,然后构造题中给出的不等式即可。
易错点
不会利用放缩法得到,进而导致没有思路求第(3)问。
设函数.
26.若处的切线斜率为
,求
的值;
27.当时,求
的单调区间;
28.若,求证:在
时,
.
正确答案
(1)
解析
(Ⅰ)若处的切线斜率为
,
,
得.
考查方向
解题思路
根据导数的几何意义求解,
易错点
不清楚;
正确答案
(2)的单调减区间为
,单调增区间为
;
解析
(Ⅱ)由
当时,令
解得:
当变化时,
随
变化情况如下表:
由表可知:在
上是单调减函数,在
上是单调增函数
所以,当时,
的单调减区间为
,单调增区间为
考查方向
解题思路
先求导,然后判断单调性后即可得到单调区间;
易错点
不清楚;
正确答案
(3)略
解析
(Ⅲ)当时,要证
,即证
令,只需证
由指数函数及幂函数的性质知:在
上是增函数
又 ∴
在
内存在唯一的零点,也即
在
上有唯一零点
设的零点为
,则
即
由的单调性知:
当时,
,
为减函数
当时,
,
为增函数,
所以当时,
又,等号不成立∴
考查方向
解题思路
先将要求的函数变形为,然后判断其单调性即可证明。
易错点
不会构造函数解决问题,当所要的函数正负不确定时,不知道应该设零点解决。
扫码查看完整答案与解析