热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分别是棱AD、AA、AB的中点。

(1)  证明:直线EE//平面FCC

求二面角B-FC-C的余弦值。

正确答案

(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1

连接A1D,C1F1,CF1,因为AB="4," CD=2,且AB//CD,

所以CDA1F1,A1F1CD为平行四边形,所以CF1//A1D,

又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,

所以CF1//EE1,又因为平面FCC平面FCC

所以直线EE//平面FCC.

(2)因为AB="4," BC="CD=2," 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角, 在△BCF为正三角形中,,在Rt△CC1F中, △OPF∽△CC1F,∵,

在Rt△OPF中,,,所以二面角B-FC-C的余弦值为.

解法二:(1)因为AB="4," BC="CD=2," F是棱AB的中点,

所以BF=BC=CF,△BCF为正三角形, 因为ABCD为

等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,

连接DM,则DM⊥AB,所以DM⊥CD,

以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,

,则D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),

C1(0,2,2),E(,,0),E1,-1,1),所以,,设平面CC1F的法向量为所以,则,所以,所以直线EE//平面FCC.

(2),设平面BFC1的法向量为,则所以,取,则,

,

所以,由图可知二面角B-FC-C为锐角,所以二面角B-FC-C的余弦值为

1
题型:简答题
|
简答题

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;

(Ⅱ)若,,求二面角的正切值.

正确答案

(1)对于线面垂直的证明,一般要通过线线垂直来分析证明,关键是对于

(2)3

试题分析:解析:(Ⅰ)因为平面,平面,所以.又因为平面,平面,所以.而,平面,平面,所以平面.                                 

5分 

(Ⅱ)由(Ⅰ)可知平面,而平面,所以,而为矩形,所以为正方形,于是.

法1:以点为原点,轴、轴、轴,建立空间直角坐标系.则,于是,.设平面的一个法向量为,则,从而,令,得.而平面的一个法向量为.所以二面角的余弦值为,于是二面角的正切值为3.                                      13分

法2:设交于点,连接.因为平面,平面,平面,所以,,于是就是二面角的平面角.又因为平面,平面,所以是直角三角形.由可得,而,所以,,而,所以,于是,而,于是二面角的正切值为.

点评:主要是考查了空间几何体中线面垂直的证明,以及二面角的平面角的求解,属于中档题。

1
题型:简答题
|
简答题

如图所示,正方体ABCD-A1B1C1D1,M为AA1的中点,N为A1B1上的点,且满足A1N=NB1,P为底面正方形A1B1C1D1的中心.求证:MN⊥MC,MP⊥B1C.

正确答案

证明略

 设=a,=b,=c

则a、b、c两两垂直且模相等.

∴a·b=b·c=a·c=0,

又∵=NB1

==b,

=+=a+b,

=++=-a+b+c,

·=(a+b)·(b+c-a)

=- =0.

∴MN⊥MC,

=+ =+(b+c)=(a+b+c),

=+=-a+c.

·=(a+b+c)(c-a)=0.∴MP⊥B1C.

1
题型:简答题
|
简答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△,使得平面⊥平面ABD.

(Ⅰ)求证:平面ABD;

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)求二面角的余弦值.

正确答案

(Ⅰ)先证 (Ⅱ) (Ⅲ)

试题分析:(Ⅰ)平行四边形ABCD中,AB=6,AD=10,BD=8,

沿直线BD将△BCD翻折成△

可知CD=6,BC’=BC=10,BD=8,

.          

∵平面⊥平面,平面平面=平面

平面.        

(Ⅱ)由(Ⅰ)知平面ABD,且

如图,以D为原点,建立空间直角坐标系.            

∵E是线段AD的中点,

在平面中,

设平面法向量为

,即

,得,故.            

设直线与平面所成角为,则

.           

∴直线与平面所成角的正弦值为.              

(Ⅲ)由(Ⅱ)知平面的法向量为

而平面的法向量为

因为二面角为锐角,

所以二面角的余弦值为

点评:本题重点考查线面垂直、线面角与二面角的平面角,以及翻折问题,学生必须要掌握在翻折的过程中,哪些是不变的,哪些是改变,这也是解决此类问题的关键.

1
题型:简答题
|
简答题

如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大小;

(2)求直线BD与EF所成的角的余弦值.

正确答案

(1) 二面角B—AD—F的大小为45° (2) 直线BD与EF所成的角的余弦值为

 (1)∵AD与两圆所在的平面均垂直,

∴AD⊥AB,AD⊥AF,

故∠BAF是二面角B—AD—F的平面角.

依题意可知,ABFC是正方形,

∴∠BAF=45°.

即二面角B—AD—F的大小为45°;

(2)以O为原点,CB、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),

则O(0,0,0),

A(0,-3,0),B(3,0,0),D(0,-3,8),

E(0,0,8),F(0,3,0),

=(-3,-3,8),=(0,3,-8).

cos〈,〉= ==-.

设异面直线BD与EF所成角为,则

cos=|cos〈,〉|=.

即直线BD与EF所成的角的余弦值为.

下一知识点 : 用向量方法解决线线、线面、面面的夹角问题
百度题库 > 高考 > 数学 > 用向量证明线线、线面、面面的垂直、平行关系

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题