热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

四棱锥中,底面为平行四边形,侧面,已知

(Ⅰ)求证:

(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;

(Ⅲ)求直线与面所成角的正弦值。

正确答案

(1)(2)详见试题解析; 

试题分析:(Ⅰ)要证线线垂直只要证明线面垂直,利用题中数据求出底面平行四边形的各边的长度,找到 及 是等腰三角形,利用等腰三角形中线是高结论找到“线线垂直”关系(Ⅱ)要找线面平行先找线线平行,要找线线平行先找面面交线,即平面 与平面交线 , 注意到为中点的特点,即可导致,从而推出线面平行 (Ⅲ)建立空间直角坐标系,确定关键点的坐标,再运用空间向量进行运算.

试题解析:(Ⅰ)证明:连接AC,

由余弦定理得  2分

中点,连接,则.

 

       4分

(Ⅱ)当的中点时,

证明:连接 ,在中,  ,又 平面 ,

平面面 平面.  7分

(3)如图,以射线OA为X轴,以射线OB为轴,以射线OS为轴,以为原点,建立空间直角坐标系,则

      

9分

设平面法向量为

,则

   11分   

所以直线与面所成角的正弦值为12分

1
题型:简答题
|
简答题

(理)如图,P—ABCD是正四棱锥,是正方体,其中

(1)求证:

(2)求平面PAD与平面所成的锐二面角的余弦值;

正确答案

(1)以轴,轴,轴建立空间直角坐标系, ∴ ∴

 , 即(2)

试题分析:以轴,轴,轴建立空间直角坐标系

(1)证明:设E是BD的中点,P—ABCD是正四棱锥,

 

, ∴ ∴

 , 即.

(2)解:设平面PAD的法向量是

 

   取

又平面的法向量是

  , ∴.

点评:要证两直线垂直只需证明两直线的方向向量数量积为0,求二面角时首先找到两个半平面对应的法向量,求出法向量夹角,进而转化为平面角

1
题型:简答题
|
简答题

已知是边长为的正方形ABCD的中心,点E、F分别是AD、BC的中点,沿对角线AC把正方形ABCD折成直二面角D-AC-B;

(Ⅰ)求∠EOF的大小;

(Ⅱ)求二面角E-OF-A的余弦值;

(Ⅲ)求点D到面EOF的距离.

正确答案

(Ⅰ)以O点为原点,以的方向为轴的正方向,建立如图所示的坐标系,则

,     

(Ⅱ)设平面EOF的法向量为,则

,即,令,则

又平面FOA的法向量 为

二面角E-OF-A的余弦值为.                            

(Ⅲ)

∴点D到平面EOF的距离为

1
题型:简答题
|
简答题

(本小题满分12分)

如图,在长方体中,的中点,的中点。

(1)证明:

(2)求与平面所成角的正弦值。

正确答案

 

方法一:(1)根据已知在长方体

中, ,(3分)

同理可求,(理3分,文4分)

,∴,即。(6分)

(2)设点到平面的距离为,连结,则 ,

,(8分)

,在中,,(10分)

,所以,∴

即点到平面的距离为

与平面所成角的正弦值为.(12分)

方法2:(1)以点为原点,分别以轴的正方向,建立如图所示的空间直角坐标系,(2分)

依题意,可得 。(4分)

 ,

,∴。(6分)

(2)设,且平面,则

 ,即

解得

,得,所以与平面所成角的正弦值为

。(12分)

1
题型:简答题
|
简答题

如图,正方体的棱长为分别是的中点.

⑴求多面体的体积;

⑵求与平面所成角的余弦值.

正确答案

(1)

(2)

试题分析:⑴……1分,……2分,……3分,所以,多面体的体积……4分

⑵以为原点,分别为轴、轴、轴建立空间直角坐标系……5分,则……6分,设平面的一个法向量为,则……8分,即

9分,取,则……10分,  11分, 12分,

与平面所成角的余弦值  13分。

点评:主要是考查了线面角的求解以及锥体体积的求解,属于中档题。

下一知识点 : 用向量方法解决线线、线面、面面的夹角问题
百度题库 > 高考 > 数学 > 用向量证明线线、线面、面面的垂直、平行关系

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题