- 简谐运动的描述
- 共4463题
一弹簧振子做简谐振动,从振子经过某一位置开始计时,下列说法正确的是( )
正确答案
解析
解:A、若△t=T,振子的位移大小相等,但弹簧的长度不一定相等.故A错误.
B、当振子的速度再次与零时刻的速度相同时,可能振子通过关于平衡位置对称点,经过的时间为不一定是一个周期.故B错误.
C、弹簧振子做简谐振动,具有对称性,振子在一个周期内,经过的路程是4个振幅.故C正确.
D、当振子再次经过此位置时,振子的位移相等,经过的时间不一定是一个周期.故D错误.
故选C
弹簧振子振动的最大位移是5cm(相对于平衡位置o而言),则完成一次全振动通过的路程是( )
正确答案
解析
解:在一次全振动中,质点回到了原来的位置,故位移一定为零;完成1次全振动,振子通过的路程是:
S=4A=4×1=5m=20
故选:D.
某简谐运动的位移与时间关系为:x=10sin(100πt+π)cm,由此可知该振动的振幅是______cm,频率是______Hz.
正确答案
解析
解:根据简谐运动的表达式为x=Asin(ωt+φ),知振幅为10cm,周期T==
=
,而频率与周期的关系为f=
=50HZ,
故本题答案为:10cm 50Hz
将一水平放置的弹簧振子从平衡位置向右拉开4cm后放手,让它做振动.已知从放手到回到平衡位置的时间为0.1秒,求:
(1)弹簧振子的振幅、周期、频率.
(2)振子从开始运动经2.5秒末的位移大小.此时正要向哪个方向做怎样的运动?
(3)振子经5秒通过的路程.
(4)若将弹簧振子从平衡位置向右拉开6cm后释放,运动过程中的振幅、周期变为多少?
正确答案
解析
解:(1)简谐运动中,振幅是振子与平衡位置的最大距离,故振幅为4cm;
从最大位移回到平衡位置的时间为=0.1s,故周期为0.4s,频率为2.5Hz;
(2)振子从开始运动经2.5秒时为6T,位移大小为零.此时正要向做加速度增大的减速运动
(3)周期为0.4s,故5s内完成12.5次全振动;一个全振动内通过的路程等于4倍振幅,故5s内路程为振幅的50倍,即200cm;
(4)若将弹簧振子从平衡位置向右拉开6cm后释放,运动过程中的振幅为6cm、周期不变为0.4s.
答:(1)弹簧振子的振幅为4cm、周期为0.4s,频率为2.5Hz;.
(2)位移大小为零.此时正要向做加速度增大的减速运动
(3)200cm(4)运动过程中的振幅为6cm、周期不变为0.4s.
振子以O为平衡位置,在AB间做简谐运动,间距为10cm,振子从O运动到P点历时0.2s,经点A再回到P点又历时0.4s,下列说法正确的是( )
正确答案
解析
解:A、振子以O为平衡位置,在AB间做简谐运动,间距为10cm,则振幅为,A错误;
B、振子从O运动到P点历时0.2s,经点A再回到P点又历时0.4s,由振子运动的对称性有,故周期T=1.6s,B正确;
C、周期T=1.6s,则频率,C错误;
D、它由P点经点O运动到B点过程中,从P运动到O点的时间等于振子从O运动到P点的时间,再从O运动运动的B点的时间为,故它由P点经点O运动到B点,历时
=0.6s,D正确;
故选:BD.
一弹簧振子沿水平方向的x轴做简谐运动,原点O为平衡位置,在运动中某一时刻有可能出现的情况是( )
正确答案
解析
解:振子的位移方向由平衡位置指向末位置,回复力的方向指向平衡位置,则加速度的方向指向平衡位置,位移的方向与加速度的方向一定相反.而速度的方向与加速度或位移的方向可能相同,可能相反.故A正确,B、C、D错误.
故选:A
某弹簧振子完成10次全振动需要5s的时间,在此5s的时间内通过的路程是100cm,求此弹簧振子的振幅、周期和频率.
正确答案
解析
解:弹簧振子完成10次全振动需要5s的时间,故周期为:T==0.5s;
每个周期,振子的路程等于4倍的振幅,故10×4A=100cm,解得:A=2.5cm;
频率为:=2Hz;
答:此弹簧振子的振幅为2.5cm,周期为0.5s,频率为2Hz.
某质点做简谐运动,其位移随时间变化的关系式为x=Asint,则质点( )
正确答案
解析
解:A、由关系式可知,将t=1s和t=3s代入关系式中求得两时刻位移相同.故A正确.
B、画出对应的位移-时间图象,由图象可以看出,第3s末和第5s末的速度方向相同.故B正确.
C、由图象可知,3s末至5s末的位移大小相同,方向相反.故C错误.
D、由图象可知,1s末至3s末的而速度是大小相同,方向相反.故D错误.
故选:AB.
一弹簧振子做简谐运动,周期为8s.已知在t=2s和t=6s时刻,振子正好位于其平衡位置,则下列说法中正确的是( )
正确答案
解析
解:A、由题分析,振子在t=0时刻位于最大位移处,速度为零.t=10s时,振子在平衡位置,速度最大.故A错误.
B、在t=4s和t=12s相隔一个周期,振子均位于最大位移处,加速度最大.故B正确.
C、在t=6s和t=14s相隔一个周期,振子均位于平衡位置,动能最大,势能最小.故C正确.
D、在t=8s和t=10s时振子均位于平衡位置,位移为零.故D错误.
故选BC
如图所示,有一个摆长为L的单摆,现将摆球A拉离平衡位置一个很小的角度,然后由静止释放,A摆至平衡位置P时,恰与静止在P处的B球发生正碰,碰后A继续向右摆动,B球以速度v沿光滑水平面向右运动,与右侧的墙壁碰撞后以原速率返回,当B球重新回到位置P时恰与A再次相遇,求位置P与墙壁间的距离d.
正确答案
解析
解:摆球A做简谐运动,当其与B球发生碰撞后速度改变,但是摆动的周期不变.
而B球做匀速直线运动,再次相遇的条件为B球来回所需要的时间为单摆半周期的整数倍.
B球运动时间t=(n=1,2,3…)
又t=,T=2
联立解得
d=
答:位置P与墙壁间的距离d=.
扫码查看完整答案与解析