- 用数学归纳法证明不等式
- 共357题
已知a1=,an+1=
,则a2,a3,a4,a5的值分别为_________,由此猜想an=_________.
正确答案
(本小题满分16分)
已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;
(2)用数学纳法证明你的猜想,并求出an的表达式.
正确答案
(1)S1=a1=1.S2=,S3=
=
,S4=
,猜想Sn=
(n∈N*).
(2)见解析
本题主要考查了数列的递推式.数列的递推式是高考中常考的题型,涉及数列的通项公式,求和问题,数列与不等式的综合等问题.
(1)先根据数列的前n项的和求得S1,S2,S3,S4,可知分母和分子分别是等差数列进而可猜想出Sn.
(2)利用an=Sn-Sn-1,整理出an的递推式,进而用叠乘法求得an.
(1)解 ∵an=Sn-Sn-1(n≥2)
∴Sn=n2(Sn-Sn-1),∴Sn=Sn-1(n≥2)
∵a1=1,∴S1=a1=1.
∴S2=,S3=
=
,S4=
, ┄┄┄┄┄┄┄┄┄┄6分
猜想Sn=(n∈N*). ┄┄┄┄┄┄┄┄┄┄8分
(2)证明 ①当n=1时,S1=1成立.
②假设n=k(k≥1,k∈N*)时,等式成立,即Sk=,
当n=k+1时,
Sk+1=(k+1)2·ak+1=ak+1+Sk=ak+1+,
∴ak+1=,
∴Sk+1=(k+1)2·ak+1==
,
∴n=k+1时等式也成立,得证.
∴根据①、②可知,对于任意n∈N*,等式均成立.┄┄┄┄┄┄┄┄┄┄13分
又∵ak+1=,∴an=
. ┄┄┄┄┄┄┄┄┄16分
(本小题满分12分)
数列满足
(1)写出并猜想
的表达式
(2)用数学归纳法证明你的猜想.
正确答案
(1) ,猜想:
;(2)证明:见解析。
本试题主要是考查了数列的递推关系式的运用,以及归纳猜想思想的运用,并运用数学归纳法加以证明的综合运用。首先先分析前几项,然后发现规律得到通项公式,分两步进行证明。
(1) ………………….(4分)
猜想:………………(6分)
(2)证明:i)当时,
,猜想成立………………….(8分)
ii)假设当时,猜想成立,即
那么,当时,
这说明当时,猜想也成立.
由i),ii)知,对………………….(12分)
(本题满分10分)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论.
正确答案
a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.证明见解析.
猜测an=n(n+1),bn=(n+1)2,n∈N*.
主要考查了数列的通项公式和数学归纳法的运用。
由条件得2bn=an+an+1,=bnbn+1,
由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.
猜测an=n(n+1),bn=(n+1)2,n∈N*.
用数学归纳法证明:
①当n=1时,由已知a1=2,b1=4可得结论成立.
②假设当n=k(k≥2且k∈N*)时,结论成立,即
ak=k(k+1),bk=(k+1)2,
那么当n=k+1时,
ak+1=2bk-ak=2(k+1)2-k(k+1)=(k+1)(k+2),
bk+1==
=(k+2)2.
解:由条件得2bn=an+an+1,=bnbn+1,
由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.
猜测an=n(n+1),bn=(n+1)2,n∈N*. 4分
用数学归纳法证明:
①当n=1时,由已知a1=2,b1=4可得结论成立.
②假设当n=k(k≥2且k∈N*)时,结论成立,即
ak=k(k+1),bk=(k+1)2,
那么当n=k+1时,
ak+1=2bk-ak=2(k+1)2-k(k+1)=(k+1)(k+2),
bk+1==
=(k+2)2.
所以当n=k+1时,结论也成立.
由①②可知,an=n(n+1),bn=(n+1)2对一切n∈N*都成立. 10分
用数学归纳法证明“”时,从
到
,等式的左边需要增乘的代数式是__________ ;
正确答案
左边需要增乘.
扫码查看完整答案与解析