热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

如图,△ABC的角平分线AD的延长线交它的外接圆于点E。

(I)证明:△ABE∽△ADC;

(Ⅱ)若△ABC的面积S=AD·AE,求∠BAC的大小。

正确答案

解:(Ⅰ)证明:由已知条件,可得∠BAE=∠CAD

因为∠AEB与∠ACB是同弧上的圆周角

所以∠AEB=∠ACD

故△ABE∽△ADC;

(Ⅱ)因为△ABE∽△ADC

所以

即 AB · AC=AD · AE

故AB·ACsin∠BAC= AD·AE

则sin∠BAC =1

又∠BAC为三角形内角

所以∠BAC=90°。

1
题型:简答题
|
简答题

在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。

(Ⅰ)求证:

(Ⅱ)若AC=3,求AP·AD的值。

正确答案

解:(1)

,∴

又∵AB=AC,

(2)

1
题型:简答题
|
简答题

(选做题)

如图,AB是⊙O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F。求证:

(1)∠DEA=∠DFA;

(2)AB2=BE·BD-AE·AC。

正确答案

解:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°

又EF⊥AB,∠EFA=90°,

则A,D,E,F四点共圆,

∴∠DEA=∠DFA。

(2)由(1)知,BD·BE=BA·BF,

又△ABC∽△AEF,

即AB·AF=AE·AC

∴BE·BD-AE·AC=BA·BF-AB·AF=AB(BF-AF)=AB2

1
题型:简答题
|
简答题

(选做题)如图△ABC内接于圆O,AB=AC,直线MN切圆O于点C,BD∥MN,AC与BD相交于点E,

(1)求证:AE=AD;

(2)若AB=6,BC=4,求AE。

正确答案

(1)证明:∵BD ∥MN,

又∵MN为圆的切线,

,则, 

∴∠DCN=∠CAD,

∴AE=AD。

(2)解:且AE=AD,    

∴△ABE≌△ACD,

∴BE=CD=BC=4,    

设AE=x,易证

所以

1
题型:简答题
|
简答题

(选做题)

如图,ΔABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E,

(Ⅰ)求证:ΔABE≌ΔACD;

(Ⅱ)若AB=6,BC=4,求AE。

正确答案

解:(Ⅰ)在ΔABE和ΔACD中,

∵AB=AC,∠ABE=∠ACD,

又∠BAE=∠EDC,

∵BD∥MN,

∴∠EDC=∠DCN,

∵直线是圆的切线,

∴∠DCN=∠CAD,

∴∠BAE=∠CAD,

∴ΔABE≌ΔACD(角、边、角)。

(Ⅱ)∵∠EBC=∠BCM,∠BCM=∠BDC,

∴∠EBC=∠BDC=∠BAC,BC=CD=4,

又∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB,

∴BC=BE=4,

设AE=x,易证ΔABE∽ΔDEC,

又AE·EC=BE·ED,EC=6-x,

百度题库 > 高考 > 数学 > 相似三角形的判定及有关性质

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题