- 弦切角的性质
- 共102题
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.
正确答案
证明:(1)连接OP,
因为AC⊥l,BD⊥l,
所以AC∥BD.
又OA=OB,PC=PD,
所以OP∥BD,
从而OP⊥l.
因为P在⊙O上,
所以l是⊙O的切线.
(2)连接AP,
因为l是⊙O的切线,
所以∠BPD=∠BAP.
又∠BPD+∠PBD=90°,
∠BAP+∠PBA=90°,
所以∠PBA=∠PBD,
即PB平分∠ABD.
(选做题)如图△ABC内接于圆O,AB=AC,直线MN切圆O于点C,BD∥MN,AC与BD相交于点E,
(1)求证:AE=AD;
(2)若AB=6,BC=4,求AE。
正确答案
(1)证明:∵BD ∥MN,
∴,
又∵MN为圆的切线,
∴,则
,
∴∠DCN=∠CAD,
,
∴,
∴,
又,
∴,
∴AE=AD。
(2)解:且AE=AD,
∴△ABE≌△ACD,
∴BE=CD=BC=4,
设AE=x,易证,
又,
所以。
如图:
已知圆上的弧=
,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.
正确答案
(Ⅰ)因为=
,
所以∠BCD=∠ABC.
又因为EC与圆相切于点C,
故∠ACE=∠ABC
所以∠ACE=∠BCD.(5分)
(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,
所以△BDC~△ECB,
故=
.
即BC2=BE×CD.(10分)
(选做题)如图△ABC内接于圆O,AB=AC,直线MN切圆O于点C,BD∥MN,AC与BD相交于点E,
(1)求证:AE=AD;
(2)若AB=6,BC=4,求AE。
正确答案
(1)证明:∵BD ∥MN,
∴,
又∵MN为圆的切线,
∴,则
,
∴∠DCN=∠CAD,
,
∴,
∴,
又,
∴,
∴AE=AD。
(2)解:且AE=AD,
∴△ABE≌△ACD,
∴BE=CD=BC=4,
设AE=x,易证,
又,
所以。
(选做题)
如图,ABCD是圆的内接四边形,AB∥CD,过C点的圆的切线与BA的延长线交于E点,
证明:(Ⅰ)∠DBC=∠AEC;
(Ⅱ)BC2=BE·CD。
正确答案
证明:(Ⅰ)因为是圆的内接四边形,
所以,
又因为与圆相切于点
,
所以,
因为,
所以,
所以,
故;
(Ⅱ),
所以,
又因为
所以∽
,
故
即。
扫码查看完整答案与解析