- 直角三角形的射影定理
- 共75题
如图,在△ABC中,∠A=60°,∠ACB=70°,CF是△ABC的边AB上的高,FP⊥BC于点P,FQ⊥AC于点Q,则∠CQP的大小为( )。
正确答案
50°
如图,BC是半径为2的圆O的直径,点P在BC的延长线上,PA是圆O的切线,点A在直径BC上的射影是OC的中点,则∠ABP=( );PB·PC=( )。
正确答案
30°;12
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
正确答案
(Ⅰ)证明:连接DE,
根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,
即,
又∠DAE=∠CAB,从而△ADE∽△ACB,
因此∠ADE=∠ACB,
所以C,B,D,E四点共圆。
(Ⅱ)解:m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12,
故AD=2,AB=12,
取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,
两垂线相交于H点,连接DH,
因为C,B,D,E四点共圆,
所以C,B,D,E四点所在圆的圆心为H,半径为DH,
由于∠A=90°,
故GH∥AB,HF∥AC,HF=AG=5,DF=(12-2)=5,
故C,B,D,E四点所在圆的半径为5。
(选做题)
如图,AB是⊙O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F。求证:
(1)∠DEA=∠DFA;
(2)AB2=BE·BD-AE·AC。
正确答案
解:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°
又EF⊥AB,∠EFA=90°,
则A,D,E,F四点共圆,
∴∠DEA=∠DFA。
(2)由(1)知,BD·BE=BA·BF,
又△ABC∽△AEF,
∴
即AB·AF=AE·AC
∴BE·BD-AE·AC=BA·BF-AB·AF=AB(BF-AF)=AB2。
如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.
正确答案
证明:(Ⅰ)∵AB=AC,AF=AE
∴CD=BE
又∵CF=CD,BD=BE
∴CD=BD
又∵△ABC是等腰三角形,
∴AD是∠CAB的角分线
∴圆心O在直线AD上.
(II)连接DF,由(I)知,DH是⊙O的直径,
∴∠DHF=90°,
∴∠FDH+∠FHD=90°
又∵∠G+∠FHD=90°
∴∠FDH=∠G
∵⊙O与AC相切于点F
∴∠AFH=∠GFC=∠FDH
∴∠GFC=∠G
∴CG=CF=CD
∴点C是线段GD的中点.
扫码查看完整答案与解析