- 直线与平面垂直的判定与性质
- 共118题
19.已知正方体



(1)求异面直线

(2)求四面体
正确答案
(1)由



连接


所以
即异面直线


(利用空间向量同样给分)
(2)算出




该四面体

解析
解析已在路上飞奔,马上就到!
知识点
如图,在四棱锥A—BCDE中,平面





(1)证明:

(2)求直线
正确答案
见解析
解析
证明:(1)连接



由

又平面


(2)在直角梯形


又平面


做








在


在


在


所以,直线

知识点
如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点。
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=

正确答案
见解析。
解析
(1)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点
∵E为PD的中点,∴EO∥PB,EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;
(2)∵AP=1,AD=



∴AB=
又
知识点
如图,四棱锥



(1)求证:
(2)求异面直线

正确答案
见解析
解析
(1)∵

∴CD⊥SD
又四边形ABCD是正方形,∴CD⊥AD
∴CD⊥平面SDA

∴SA⊥CD.
(2)∵
∴


由(1),BA⊥平面SDA,∴△SAB是直角三角形.

故异面直线SB与CD所成角的大小为
知识点
图4,PA垂直于⊙O所在平面ABC,AB为⊙O的直径,PA=AB=2,
(1)证明:BC平面PAC;
(2)证明:CFBP;
(3)求四棱锥C—AOFP的体积.
正确答案
见解析。
解析
(1)
证明:∵PA⊥平面ABC,BC⊥平面ABC,
∴BC⊥PA.
∵△ACB是直径所对的圆周角,
∴
又∵


(2)证明:∵PA⊥平面ABC,OC⊥平面ABC,
∴OC⊥PA.
∵C是弧AB的中点,
∴△ABC是等腰三角形,AC=BC,
又O是AB的中点,∴OC⊥AB.
又∵




∴
设BP的中点为E,连结AE,则
∴
∵





(3)解:由(2)知




又∵
∴
又∵
∴四棱锥
知识点
扫码查看完整答案与解析





















