热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积为.

(1)求椭圆C的方程;

(2)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 13 分

21.在平面直角坐标系中,已知椭圆C:的左焦点为,且椭圆C的离心率.

(1)求椭圆C的方程;

(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于的任一点,直线分别交x轴于点S,T,证明:为定值,并求出该定值;

(3)在椭圆C上,是否存在点,使得直线与圆相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 18 分

23.给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为

(1)求椭圆的方程和其“准圆”方程;

(2)点是椭圆的“准圆”上的一个动点,过点作直线,使得与椭圆都只有一个交点,且分别交其“准圆”于点.

①当为“准圆”与轴正半轴的交点时,求的方程;

②求证:为定值

正确答案

(1)

所以,椭圆方程:

准圆方程:

(2)①易知且直线斜率存在,

设直线为

联立

因为椭圆与直线有且只有一个交点,

所以,因此

所以的方程为

②<ⅰ>当的斜率存在时,设点

设直线

---(*)

同理,联立和椭圆方程可得:---(**)

由(*)(**)可知,是方程的两个根

因此是准圆的直径,所以

<ⅱ>当中有一条斜率不存在时,,此时

所以

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

20. 已知点是椭圆E:)上一点,分别是椭圆的左、右焦点,是坐标原点,轴.

(1)求椭圆的方程

(2)设是椭圆上两个动点,.求证:直线的斜率为定值;

正确答案

解:(1)∵PF1⊥x轴,

∴F1(-1,0),c=1,F2(1,0),

|PF2|=,2a=|PF1|+|PF2|=4,a=2,b2=3,

椭圆E的方程为:

(2)设A(x1,y1)、B(x2,y2),由

(x1+1,y1-)+(x2+1,y2-)=(1,- ),

所以x1+x2=-2,y1+y2=(2-………①

两式相减得3(x1+x2)(x1-x2)+ 4(y1+y2)(y1-y2)=0………..②

以①式代入可得AB的斜率k=为定值;

解析

解析已在路上飞奔,马上就到!

知识点

向量在几何中的应用椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 13 分

21.在平面直角坐标系中,已知椭圆C:的左焦点为,且椭圆C的离心率.

(1)求椭圆C的方程;

(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于的任一点,直线分别交x轴于点S,T,证明:为定值,并求出该定值;

(3)在椭圆C上,是否存在点,使得直线与圆相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
下一知识点 : 圆锥曲线中的探索性问题
百度题库 > 高考 > 文科数学 > 圆锥曲线的定点、定值问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题