热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

20. 如图,已知椭圆 ,离心率是椭圆上的任一点,从原点向圆作两条切线,分别交椭圆于点

(Ⅰ)若过点的直线与原点的距离为,求椭圆方程;

(Ⅱ)在(Ⅰ)的条件下,若直线的斜率存在,并记为.试问是否为定值?若是,求出该值;若不是,说明理由.

正确答案

(1);(2)为定值。

解析

试题分析:本题属于直线与圆锥曲线的问题,

(1)由已知条件构造方程组求解(2)用设而不求的方法来解决.

(Ⅰ)因为离心率,所以,而        所以,即   ①                                                           设经过点的直线方程为

因为直线与原点的距离为

所以,整理得:②                                          由①②得                                                                                        所以椭圆的方程为

(Ⅱ)解:因为直线, 与圆M相切,由直线和圆相切的条件: ,可得,                                                  平方整理,可得,
,                                                 所以是方程的两个不相等的实数根, ,因为点在椭圆C上,所以,即,所以为定值;

考查方向

本题考查了直线与圆锥曲线的问题.

解题思路

本题考查直线与圆锥曲线的问题,解题步骤如下:

由已知条件构造方程组求解。

用设而不求的方法来解决。

易错点

不会利用设而不求的思想来解答。

知识点

椭圆的几何性质椭圆的相关应用圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,.

24.求该椭圆的离心率;

25.设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.e=

解析

当线段A的中点在y轴上时,AC垂直于轴,为直角三角形.

因为cos∠,所以||=3||,易知||=,由椭圆的定义||+||=2a

,所以e=

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

先证出为直角三角形,求出,再由定义得到a,b方程, 从中解出离心率

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

+是定值6

解析

由24得椭圆方程为,焦点坐标为,当AB、AC的斜率都存在时,设,A()、B()、C()

则直线AC的方程为y=, 代入椭圆方程得,=0

 又,同理,+=6

(2) 若AB⊥x轴,则=1,,这时也有.+=6.

综上所述,+是定值6

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,验证是否为定值。

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

1
题型:简答题
|
简答题 · 12 分

已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,.

24.求该椭圆的离心率;

25.设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.e=

解析

当线段A的中点在y轴上时,AC垂直于轴,为直角三角形.

因为cos∠,所以||=3||,易知||=,由椭圆的定义||+||=2a

,所以e=

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

先证出为直角三角形,求出,再由定义得到a,b方程, 从中解出离心率

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

+是定值6

解析

由24得椭圆方程为,焦点坐标为,当AB、AC的斜率都存在时,设,A()、B()、C()

则直线AC的方程为y=, 代入椭圆方程得,=0

 又,同理,+=6

(2) 若AB⊥x轴,则=1,,这时也有.+=6.

综上所述,+是定值6

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,验证是否为定值。

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

1
题型:填空题
|
填空题 · 12 分

20.在直角坐标系xoy中,直线ly=t(t≠0)交y轴于点M,交抛物线Cy2=2px(p>0)于点PM关于点P的对称点为N,连结ON并延长交C于点H.

(Ⅰ)求; (Ⅱ)除H以外,直线MHC是否有其它公共点?说明理由.

正确答案

1

知识点

抛物线的标准方程和几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
下一知识点 : 圆锥曲线中的探索性问题
百度题库 > 高考 > 文科数学 > 圆锥曲线的定点、定值问题

扫码查看完整答案与解析

  • 上一题
  • 1/4
  • 下一题