热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

求经过两条直线l1:3x+4y-2=0与l2:2x+y+2=0的交点P,且垂直于直线l3:x-2y-1=0直线l的方程.

正确答案

解方程组,得交点(-2,2).

又由l⊥l3,且k3=

因为两直线垂直得斜率乘积为-1,

得到kl=-2,

∴直线l的方程为y-2=-2(x+2),即2x+y+2=0.

1
题型:简答题
|
简答题

已知△ABC的顶点A(5,1),AB边上的高CH所在的直线方程为2x-y-5=0,AC边上的中线BM所在的直线方程为x-2y-5=0.

(1)求顶点B的坐标;

(2)求直线BC的方程.

正确答案

(Ⅰ)由AB边上的高CH所在直线方程为2x-y-5=0可知kAB=-

又A(5,1),AB边所在直线方程为y-1=-(x-5)①

∵BM所在的直线方程为x-2y-5=0②

联立①②解得:x=6,y=

∴B(6,

(2)设(x0,yo),则AC的中点M()在中线BM上,即-2×-5=0又点C在高CH上,得2x0-y0-5=0

联立解得x0=1,y0=-3

即C(1,-3)

故直线BC的方程为7x-10y-37=0

1
题型:简答题
|
简答题

已知一条直线经过两条直线l1:2x-3y-4=0和l2:x+3y-11=0的交点,并且垂直于这个交点和原点的连线,求此直线方程.

正确答案

设所求直线的斜率为k,交点为P(x,y),

由方程组,解得P(5,2).

故kOP=

因直线与直线OP垂直,则k=-=-

所以所求直线的方程为y-2=-(x-5),

即5x+2y-29=0,

答:此直线的方程为5x+2y-29=0.

1
题型:简答题
|
简答题

在△ABC中,BC边上的高所在直线方程为2x-y+1=0.∠A的平分线所在直线的方程为x=0,若B点的坐标为(2,-1),求A点和C点的坐标.

正确答案

在△ABC中,BC边上的高所在直线方程为2x-y+1=0.∠A的平分线所在直线的方程为x=0,

所以,A(0,1);

∵kBC=-∴lBC:y+1=-(x-2)即x+2y=0,

又∠A的平分线所在直线方程为x=0.

∴kAC=-kAB=-=1

∴lAC:y=x+1由即C(-).

所以A,C的坐标分别为(0,1);(-).

1
题型:简答题
|
简答题

求经过两直线2x-y+4=0和x-y+5=0的交点并且满足下列条件的直线方程.

(1)平行于直线2x+3y+7=0

(2)与点P(2,-1)距离等于1的直线方程.

正确答案

(1)联立方程,解得

故两直线2x-y+4=0和x-y+5=0的交点为(1,6),

设平行于直线2x+3y+7=0的直线为2x+3y+c=0,代入(1,6),

可得2+18+c=0,解得c=-20,

所以所求直线的方程为:2x+3y-20=0

(2)当所求直线无斜率时,方程为x=1,显然满足到点P的距离为1,

当直线斜率存在时,设方程为y-6=k(x-1),即kx-y-k+6=0,

故点P到该直线的距离为=1,解得k=-

故方程为24x+7y-66=0,

故符合题意的方程为:24x+7y-66=0或x=1

下一知识点 : 点到直线的距离
百度题库 > 高考 > 数学 > 两条直线的交点坐标

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题