- 电磁感应中的能量转化
- 共184题
如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;
两杆的总电阻为R,导轨间距为l。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好。求:
(1)细线烧断后,任意时刻两杆运动的速度之比;
(2)两杆分别达到的最大速度。
正确答案
见解析。
解析
设某时刻MN和速度分别为v1、v2。
(1)MN和 动量守恒:mv1-2mv2=0 求出:
①
(2)当MN和的加速度为零时,速度最大
对受力平衡:BIl=2mg ②
③
④
由①②③④得:
知识点
如图所示,两根足够长的平行金属导轨固定在倾角=300 的斜面上,导轨电阻不计,间距L=0.4m。导轨所在空间被分成区域I和Ⅱ,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5T,在区域I中,将质量m1=0.1kg,电阻R1=0.1
的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1
的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10m/s2,问
(1)cd下滑的过程中,ab中的电流方向;
(2)ab将要向上滑动时,cd的速度v多大;
(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少。
正确答案
(1)
(2)
(3)
解析
(1)由流向
(2)开始放置刚好不下滑时,
所受摩擦力为最大静摩擦力,设其为
,有
①
设刚好要上滑时,
棒的感应电动势为
,由法拉第电磁感应定律有
②
设电路中的感应电流为,由闭合电路欧姆定律有
③
设所受安培力为
,有
④
此时受到的最大静摩擦力方向沿斜面向下,由平衡条件有
⑤
综合①②③④⑤式,代入数据解得
⑥
(3)设棒的运动过程中电路中产生的总热量为
,由能量守恒有
⑦
又
⑧
解得
⑨
知识点
导体切割磁感线的运动可以从宏观和微观两个角度来认识。如图所示,固定于水平面的U型导线框处于竖直向下的匀强磁场中,金属直导线MN在于其垂直的水平恒力F作用下,在导线框上以速度v做匀速运动,速度v与恒力F的方向相同:导线MN始终与导线框形成闭合电路。已知导线MN电阻为R,其长度恰好等于平行轨道间距,磁场的磁感应强度为B。忽略摩擦阻力和导线框的电阻。
(1) 通过公式推导验证:在时间内,F对导线MN所做的功W等于电路获得的电能
,也等于导线MN中产生的焦耳热Q;
(2)若导线MN的质量m=8.0g,长度L=0.10m,感应电流=1.0A,假设一个原子贡献一个自由电子,计算导线MN中电子沿导线长度方向定向移动的平均速率ve(下表中列出一些你可能会用到的数据);
(3)经典物理学认为,金属的电阻源于定向运动的自由电子和金属离子(即金属原子失去电子后的剩余部分)的碰撞。展开你想象的翅膀,给出一个合理的自由电子的运动模型;在此基础上,求出导线MN中金属离子对一个自由电子沿导线长度方向的平均作用力f的表达式。
正确答案
答案:(1)见解析 (2) (3)
解析
(1)动生电动势: ①
电流: ②
安培力: ③
力做功:
④
电能: ⑤
焦耳热: ⑥
由④⑤⑥可知,
(2)总电子数:
单位体积内的电子数:
⑦
(3)从微观角度看,导线中的自由电子与金属离子发生碰撞,可以看做非完全弹性碰撞,自由电子损失的动能转化为焦耳热。
从整体角度看,可视为金属离子对自由电子整体运动的平均阻力导致自由电子动能的损失,即 ⑧
从宏观角度看,导线MN速度不变,力F做功使外界能量完全转化为焦耳热。
时间内,力F做功
⑨
带入⑦,
带入②③,得
知识点
11.如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q。线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g;求
(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的 几倍
(2)磁场上下边界间的距离H
正确答案
(1)设磁场的磁感应强度大小为B,cd边刚进磁场时,线框做匀速运动的速度为v1
E1=2Blv1 ①
设线框总电阻为R,此时线框中电流为I1,闭合电路欧姆定律,有
②
设此时线框所受安培力为F1,有
③
由于线框做匀速运动,其受力平衡,有
mg=F1 ④
由①②③④式得
⑤
设ab边离开磁场之前,线框做匀速运动的速度为v2,同理可得
⑥
由⑤⑥式得
v2=4v1 ⑦
(2)线框自释放直到cd边进入磁场前,有机械能守恒定律,有
2mgl=1/2m ⑧
线框完全穿过磁场的过程中,由能量守恒定律,有
⑨
由⑦⑧⑨式得
⑩
解析
解析已在路上飞奔,马上就到!
知识点
如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B。将质量为m的导体棒由静止释放,当速度达到
时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P,导体棒最终以
的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g,下列选项正确的是( )
正确答案
解析
当速度达到时开始匀速运动,受力分析可得
,导体棒最终以
的速度匀速运动时,拉力为
,所以拉力的功率为
,选项A正确B错误。当导体棒速度达到
时安培力
,加速度为
,选项C正确。在速度达到
以后匀速运动的过程中,根据能量守恒定律,R上产生的焦耳热等于拉力所做的功加上重力做的功,选项D错误,
知识点
扫码查看完整答案与解析