热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

10. 已知数列为等差数列,且公差,数列为等比数列,若,则

A

B

C

D大小无法确定

正确答案

C

解析

因为数列为等差数列,且公差,所以,又因为,所以,所以

A选项不正确,B选项不正确,D选项不正确,所以选C选项。

考查方向

本题主要考查了等差数列和等比数列的性质:若,当为等差数列时,有,当为等比数列时,有。

解题思路

由等差数列等比数列的性质,把转化为已知来表示;

作差法比较大小。

易错点

等差等比数列性质不熟悉,没有发现第项,第项,第项的关系;

转化思想,没想到把转化为已知来表示。

知识点

等差数列的性质及应用等比数列的性质及应用
1
题型:简答题
|
简答题 · 12 分

已知等比数列的前项和为,且成等差数列.

22.求数列的通项公式;

23.设数列满足,求满足方程的正整数的值.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)N

解析

(Ⅰ)设等比数列的公比为

成等差数列,∴

,解得(舍去)

=

∴数列的通项公式为N

考查方向

本题主要考查等比数列通项公式、新数列求和(裂项相消)等知识,意在考查考生的运算求解能力.

解题思路

先根据题中给出的条件成等差数列求出公比q,后即可得到通项公式;

易错点

对于题中给出的条件成等差数列不会转化;

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)

解析

(Ⅱ)由(Ⅰ)知,,∴

∵数列满足,∴. …………7分

得,

∴满足方程的正整数的值为

考查方向

本题主要考查等比数列通项公式、新数列求和(裂项相消)等知识,意在考查考生的运算求解能力.

解题思路

1.先根据题中给出的条件成等差数列求出公比q,后即可得到通项公式;2.先根据第(1)问求出,后利用列项相消法求和后即可得到答案。

易错点

1.对于题中给出的条件成等差数列不会转化;2.利用列项相消法求和求不对。

1
题型:填空题
|
填空题 · 5 分

16. 设,为数列的前项和,满足,则的最大值为

正确答案

解析

f()+ f()==+=2,因为++……+,++,所以2=2(n-1),所以= n-1,当n=1时,= 1-1=0,适合题意,所以= n-1(n),= ,,因为n,当n=2时,= ,当n=3时,=,所以最大值.所以填

考查方向

函数与数列的关系,均值不等式。

解题思路

可利用倒序相加求= n-1,再分别求代数中的三个数得到关于正整数n的函数,利用均值不等求最大值。

易错点

时思路不清,对最值的讨论,容易忽略n的取值范围。

知识点

等差数列的性质及应用等比数列的性质及应用数列与函数的综合数列与不等式的综合
1
题型:填空题
|
填空题 · 5 分

11.已知递增的等差数列的首项,且,,成等比数列,则数列的通项公式    ____.

正确答案

解析

故此题答案为

考查方向

本题主要考查等差数列通项公式和求和公式的应用,意在考查考生的运算求解能力及分析问题和解决问题能力,在近几年的各省高考题出现的频率较高,较易。

解题思路

先根据计算出数列的公差;再根据等差数列求和公式弄清项数计算的值得到结论。

易错点

本题易在求和项数的判断上出现错误。

知识点

等差数列的性质及应用等比数列的性质及应用
1
题型: 单选题
|
单选题 · 5 分

9.已知数列满足:,且,若为数列

的前项和,则的最小值为

A

B

C

D

正确答案

D

解析

可以知道该函数是一个等差数列,又由,且可以得公差为2,所以,当n=2时可以取到最小值为

考查方向

数列的运算。

解题思路

先判断出该数列是一个等差数列,然后再求最值。

易错点

不会转化来做。

知识点

等比数列的性质及应用
百度题库 > 高考 > 文科数学 > 等比数列的性质及应用

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题