- 直线的一般式方程
- 共3297题
(选做题)在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(),圆C的参数方程
(θ为参数)。
(1)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(2)判断直线l与圆C的位置关系
正确答案
解:(1)M,N的极坐标分别为(2,0),(),
所以M、N的直角坐标分别为:M(2,0),N(0,),
P为线段MN的中点(1,),
直线OP的平面直角坐标方程y=;
(2)圆C的参数方程(θ为参数)
它的直角坐标方程为:(x-2)2+(y+)2=4,
圆的圆心坐标为(2,-),半径为2,
圆心到直线的距离为:=
>2,
所以,直线l与圆C相离。
已知AB和CD是曲线(t为参数)的两条相交于点P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)将曲线(t为参数)化为普通方程,并说明它表示什么曲线;
(Ⅱ)试求直线AB的方程。
正确答案
解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,
∴y2=4x,它表示抛物线;
(Ⅱ)设直线AB和CD的倾斜角分别为α,β,
则直线AB和CD的参数方程分别为,
把①代入y2=4x中,
得t2sin2α+(4sinα-4cosα)t-4=0,③
依题意知sinα≠0且方程③的判别式Δ=16(sinα-cosα)2+16sin2α>0,
∴方程③有两个不相等的实数解t1,t2,
则
由t的几何意义知|PA|=|t1|,|PB|=|t2|,
∴|PA|·|PB|=|t1t2|=,
同理|PC|·|PD|=,
由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,
∵0≤α,β<π,
∴α=π-β,
∵AB⊥CD,
∴β=α+90°或α=β+90°,
∴直线AB的倾斜角
∴kAB=1或kAB=-1,
故直线AB的方程为y=x或x+y-4=0。
扫码查看完整答案与解析