- 导数及其应用
- 共6208题
设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴,
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间。
正确答案
解:(Ⅰ)因为,
所以f′(x)=2ax+b,
又因为曲线y=f(x)通过点(0,2a+3),
故f(0)=2a+3,
而f(0)=c,
从而c=2a+3,
又曲线y=f(x)在(-1,f(-1))处的切线垂直于y轴,
故f′(-1)=0,即-2a+b=0,
因此b=2a;
(Ⅱ)由(Ⅰ)得,
故当时,bc取得最小值
,
此时有,
从而,
,
所以,
令g′(x)=0,解得,
当x∈(-∞,-2)时,g′(x)<0,故g(x)在x∈(-∞,-2)上为减函数;
当x∈(-2,2)时,g′(x)>0,故g(x)在x∈(-2,2)上为增函数;
当x∈(2,+∞)时,g′(x)<0,故g(x)在x∈(2,+∞)上为减函数;
由此可见,函数g(x)的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2)。
已知函数f(x)=,g(x)=2alnx(e为自然对数的底数),
(1)求F(x)=f(x)-g(x)的单调区间,若F(x)有最值,请求出最值;
(2)是否存在正常数a,使f(x)与g(x)的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出a的值,以及公共点坐标和公切线方程;若不存在,请说明理由.
正确答案
解:(1),
①当a≤0时,F′(x)>0恒成立,F(x)在(0,+∞)上是增函数,F(x)只有一个单调递增区间(0,+∞),没有最值;
②当a>0时,,
若0<x<,则F′(x)<0,F(x)在
上单调递减;
若x>,则F′(x)>0,F(x)在
上单调递增,
∴当x=时,F(x)有极小值,也是最小值,
即,
所以当a>0时,F(x)的单调递减区间为,单调递增区间为
,最小值为-alna,无最大值;
(2)若f(x)与g(x)的图象有且只有一个公共点,则方程f(x)-g(x)=0有且只有一解,
所以函数F(x)有且只有一个零点,
由(1)的结论可知F(x)min=-alna=0得a=1,
此时,F(x)=,
∴,
∴f(x)与g(x)的图象的唯一公共点坐标为,
又,
∴f(x)与g(x)的图象在点处有共同的切线,其方程为
,
即;
综上所述,存在a=1,使f(x)与g(x)的图象有且只有一个公共点,
且在该点处的公切线方程为。
已知函数f(x)=x4-3x2+6,
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.
正确答案
解:(Ⅰ),
当x∈和x∈
时,f′(x)<0;
当x∈和x∈
时,f′(x)>0;
因此,f(x)在区间和
是减函数,
f(x)在区间和
是增函数。
(Ⅱ)设点P的坐标为(x0,f(x0)),
由l过原点知,l的方程为y=f′(x0)x,
因此,f(x0)=x0f′(x0),
即:x04-3x02+6-x0(4x03-6x0)=0,
整理得(x02+1)(x02-2)=0,解得或
,
因此切线l的方程为或
。
设函数y=f(x)=ax3+bx2+cx+d的图象在x=0处的切线方程为24x+y-12=0,
(Ⅰ)求c,d;
(Ⅱ)若函数在x=2处取得极值-16,试求函数解析式并确定函数的单调区间。
正确答案
解:(Ⅰ)f(x)的定义域为R,,
∴;
∵切线24x+y-12=0的斜率为k=-24,
∴c=-24;
把x=0代入24x+y-12=0得y=12,
∴P(0,12),
∴d=12,
∴c=-24,d=12。
(Ⅱ)由(Ⅰ),
由已知得:,
∴,
∴,
∴,
由;
由;
∴f(x)的单调增区间为;单调减区间为(-4,2)。
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R),
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间。
正确答案
解:,
(Ⅰ),解得
;
(Ⅱ),
①当a≤0时,,
在区间(0,2)上,f′(x)>0;在区间(2,+∞)上f′(x)<0,
故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);
②当,
在区间(0,2)和上,f′(x)>0;在区间
上f′(x)<0,
故f(x)的单调递增区间是(0,2)和,单调递减区间是
;
③当,
故f(x)的单调递增区间是(0,+∞);
④当,
在区间和(2,+∞)上,f′(x)>0;在区间
上f′(x)<0,
故f(x)的单调递增区间是和(2,+∞),单调递减区间是
。
已知函数f(x)=ln(1+x)-x+x2(k≥0)。
(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)的单调区间。
正确答案
解:(1)当k=2时,f(x)=ln(1+x)-x+x2,f′(x)=
由于f(1)=ln2,
所以曲线y=f(x)在点(1,f(1))处的切线方程为
即3x-2y+2ln2-3=0;
(2),
当k=0时,
所以,在区间(-1,0)上,f′(x)>0;
在区间(0,+∞)上,f′(x)<0
故f(x)的单调递增区间是(-1,0),单调递减区间是(0,+∞)
当0<k<1时,由
得
所以,在区间(-1,0)和上,f′(x)>0;
在区间上,f′(x)<0
故f(x)的单调递增区间是(-1,0)和,单调递减区间是
当k=1时,
故f(x)的单调递增区间是(-1,+∞)
当k>1时,由
得
所以,在区间和(0,+∞)上,f′(x)>0
在区间上,f′(x)<0
故f(x)的单调递增区间是和(0,+∞)
单调递减区间是。
已知函数f(x)=x3+2x2﹣ax+1.
(I)若函数f(x)在点(1,f(1))处的切线斜率为4,求实数a的值;
(II)若函数f(x)在区间(﹣1,1)上是单调函数,求实数m的取值范围.
正确答案
解:(I)f′(x)=3x2+4x﹣a,
k=f′(1)=3+4﹣a=4,故a=3;
(II)f′(x)=3x2+4x﹣a是二次函数,开口向上,对称轴是 x=﹣
要使函数f(x)在区间(﹣1,1)上是单调函数,
只需
解得即a>7
所以实数a的取值范围是 a>7
已知函数,g(x)=lnx+2x。
(1)求函数f(x)的单调区间;
(2)试问过点(2,5)可作多少条直线与曲线y= g(x)相切?请说明理由。
正确答案
解:(1)∵函数的定义域为(0,+∞),
∴f'(x)
(i)当a≤0时,f'(x)>0,
∴f(x)的增区间为(0,+∞),
(ii)当a>0时,令f'(x)>0,解得x>a,
∴f(x)的增区间为(a,+∞),
令f'(x)<0,解得0<x<a,
∴f(x)的减区间为(0,a)。
(2)g(x)=2x+lnx(x>0),
设过点(2,5)的直线与曲线g(x)相切的切点坐标为(x0,y0)
∴y0-5=g'(x0)(x0-2),
即
∴
令
由(1)知当a=2时,h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,
又,h(2)=ln2-1<0,
∴h(x)与x轴有两个交点,
∴过点(2,5)可作2条曲线y=g(x)的切线。
已知函数f(x)=x2﹣(1+2a)x+alnx(a为常数).
(1)当a=﹣1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
正确答案
解:(1)当a=﹣1时,f(x)=x2+x﹣lnx,
则
∴f(1)=2,f′(1)=2
∴曲线y=f(x)在x=1处切线的方程为y﹣2=2(x﹣1)即y=2x;
(2)由题意得,
由f′(x)=0,得
①当时,令f′(x)>0,x>0,可得0<x<a或
;
令f′(x)<0,x>0,可得
∴函数f(x)的单调增区间是(0,a)和,单调减区间是
;
②当时,
,当且仅当x=
时,f′(x)=0,
所以函数f(x)在区间(0,1)上是单调增函数;
③当时,令f′(x)>0,x>0,可得0<x<a或a<x<1;
令f′(x)<0,x>0,可得
∴函数f(x)的单调增区间是(0,)和(a,1),单调减区间是
;
④当a≥1时,令f′(x)>0,x>0,可得0<x<;
令f′(x)<0,x>0,可得
∴函数f(x)的单调增区间是(0,),单调减区间是
.
已知函数
(1)若,求曲线
在
处切线的斜率;
(2)当时,求
的单调区间;
(3)设,若对任意
,均存在
,使得
,求
的取值范围.
正确答案
解:(Ⅰ)由已知,
.
故曲线在
处切线的斜率为
.
(Ⅱ).
当时,由
,得
.在区间
上,
;
在区间上,
,
所以,函数的单调递增区间为
,单调递减区间为
(Ⅲ)由已知转化为.
由(Ⅱ)知,当时,
在
上单调递增,值域为
,故不符合题意
.(或者举出反例:存在,故不符合题意.)
当时,
在
上单调递增,在
上单调递减,
故的极大值即为最大值,
,
所以,解得
.
已知函数f(x)=lnx,g(x)=(a>0),设h(x)=f(x)+g(x),
(Ⅰ)求h(x)的单调区间;
(Ⅱ)若在y=h(x)在x∈(0,3]的图象上存在一点P(x0,y0),使得以P(x0,y0)为切点的切线的斜率k≥成立,求实数a的最大值。
正确答案
解:(Ⅰ),其定义域为(0,+∞),
,
令,则x=a,
于是,当x>a时,h′(x)>0,h(x)为增函数,
当0<x<a时,h′(x)<0,h(x)为减函数,
所以h(x)的单调增区间是(a,+∞),单调减区间是(0,a);
(Ⅱ)因为,
所以在区间x∈(0,3]上存在一点P(x0,y0),
使得以P(x0,y0)为切点的切线的斜率,
等价于,
因为,
所以在x∈(0,3]的最大值为
,
于是a≤,a的最大值为
。
已知a是实数,函数f(x)=x2(x﹣a).
(1)若f'(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)在区间[0,2]上的最大值.
正确答案
解:(1)f'(x)=3x2﹣2ax.
因为f'(1)=3﹣2a=3,所以a=0.
又当a=0时,f(1)=1,f'(1)=3,
则切点坐标(1,1),斜率为3
所以曲线y=f(x)在(1,f(1))处的切线方程为y﹣1=3(x﹣1)
化简得3x﹣y﹣2=0.
(2)令f'(x)=0,解得.
当,即a≤0时,f(x)在[0,2]上单调递增,
从而fmax=f(2)=8﹣4a.
当时,即a≥3时,f(x)在[0,2]上单调递减,
从而fmax=f(0)=0.
当,即0<a<3,f(x)在
上单调递减,在
上单调递增,
从而,
函数f(x)=x3﹣(a+1)x+a,g(x)=xlnx.
(Ⅰ)若y=f(x),y=g(x)在x=1处的切线相互垂直,求这两个切线方程.
(Ⅱ)若F(x)=f(x)﹣g(x)单调递增,求a的范围.
正确答案
解:(I)f'(x)=3x2﹣(a+1),g'(x)=lnx+1
∴f'(1)=2﹣a
g'(1)=1
∵两曲线在x=1处的切线互相垂直
∴(2﹣a)×1=﹣1
∴a=3
∴f'(1)=﹣1 f(1)=0
∴y=f(x)在x=1处的切线方程为x+y﹣1=0,
同理,y=g(x)在x=1处的切线方程为x﹣y﹣1=0
(II)由F(x)=x3﹣(a+1)x+a﹣xlnx
得F'(x)=3x2﹣(a+1)﹣lnx﹣1=3x2﹣lnx﹣a﹣2
∵F(x)=f(x)﹣g(x)单调递增
∴F'(x)≥0恒成立 即a≤3x2﹣lnx﹣2
令h(x)=3x2﹣lnx﹣2
令h'(x)>0得,
令h'(x)<0得
∴
∴a的范围为(-∞,)。
已知函数f(x)=(x2+bx+c)ex在点P(0,f(0))处的切线方程为2x+y-1=0,
(Ⅰ)求b,c的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若方程f(x)=m恰有两个不等的实根,求m的取值范围。
正确答案
解:(Ⅰ),
∵f(x)在点P(0,f(0))处的切线方程为2x+y-1=0,∴;
(Ⅱ)由(Ⅰ)知:,
,
∴f(x)的单调递增区间是:,
f(x)的单调递减区间是:(-1,2)。
(Ⅲ)由(Ⅱ)知:,
;
但当x→+∞时,f(x)→+∞;
又当x<0时,恒有f(x)>0,
则当且仅当时,方程f(x)=m恰有两个不等的实根。
已知函数,其中
。
(1)当时,求曲线
在点
处的切线方程;
(2)讨论函数的单调性。
正确答案
解:(1)当时,
。
所以曲线在点
处的切线斜率是
因为
所以曲线在点
处的切线方程是
,
即
(2)令,得
①当时,
,
故在R上为增函数。
②当,即
时,列表分析如下:
所以函数在
和
内单调递增,在
内单调递减。
综上,当时,
在R上单调递增;当
时,
在
和
内单调递增,在
内单调递减。
扫码查看完整答案与解析