- 导数的几何意义
- 共3561题
1
题型:填空题
|
过点作曲线
的切线,则切线方程为
正确答案
y=5x-2
略
1
题型:简答题
|
已知函数f(x)=x3+
ax2+ax-3在(-∞,+∞)上是单调函数,且当x∈[-1,1]时,函数y=f(x)的图象上任一点切线斜率均小于4a,求实数a的取值范围.
正确答案
∵f(x)在R上是单调函数∴f'(x)≥0或f'(x)≤0在x∈R成立
而f'(x)=x2+ax+a在x∈R上不可能有f'(x)≤0成立,则只有f'(x)≥0,在x∈R成立,
即x2+ax+a≥0在x∈R恒成立.
∴△=a2-4a≤0∴0≤a≤4
又f'(x)=x2+ax+a<4a即x2+ax-3a<0在x∈[-1,1]成立,
令g(x)=x2+ax-3a,
由图象知:∴
∴a>
∴实数a的取值范围是<a≤4
1
题型:简答题
|
曲线y=-x2+4x上有两点A(4,0)、B(2,4).
求:(1)割线AB的斜率kAB及AB所在直线的方程;
(2)在曲线AB上是否存在点C,使过C点的切线与AB所在直线平行?若存在,求出C点的坐标;若不存在,请说明理由.
正确答案
(1)∵点A(4,0)、B(2,4).
∴kAB==-2,
∴y=-2(x-4).
∴所求割线AB所在直线方程为2x+y-8=0.
(2)y′=-2x+4,-2x+4=-2,得x=3,y=-32+3×4=3.
∴C点坐标为(3,3),所求切线方程为2x+y-9=0.
故在曲线AB上存在点C,使过C点的切线与AB所在直线平行.
1
题型:简答题
|
求经过点(2,0)且与y=曲线相切的直线方程.
正确答案
设切线方程为y=k(x-2),所以因为相切所以△=0,解得k=0或k=-1,
∴切线方程为x+y-2=0.或y=0
1
题型:填空题
|
函数的递减区间是 .
正确答案
[-1,1]
略
已完结
扫码查看完整答案与解析