- 直线与平面垂直的判定及其性质
- 共458题
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连接A1B、A1P(如图2)
(Ⅰ)求证:A1E⊥平面BEP;
(Ⅱ)求直线A1E与平面A1BP所成角的大小;
(Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示).
正确答案
解:解法一:不妨设正三角形ABC的边长为3
(1)在图1中,取BE中点D,连接DF.AE:EB=CF:FA=1:2
∴AF=AD=2而∠A=60°,
∴△ADF是正三角形,又AE=DE=1,
∴EF⊥AD在图2中,A1E⊥EF,BE⊥EF,
∴∠A1EB为二面角A1-EF-B的平面角.由
题设条件知此二面角为直二面角,A1E⊥BE,又BE∩EF=E(2)
∴A1E⊥平面BEF,
即A1E⊥平面BEP
(3)在图2中,A1E不垂直A1B,
∴A1E是平面A1BP的垂线,又A1E⊥平面BEP,
∴A1E⊥BE.
从而BP垂直于A1E在平面A1BP内的射影(三垂线定理的逆定理)设A1E在平面A1BP内的射影为A1Q,且A1Q交BP于点Q,则∠E1AQ就是A1E与平面A1BP所成的角,且BP⊥A1Q.
在△EBP中,BE=EP=2而∠EBP=60°,
∴△EBP是等边三角形.又A1E⊥平面BEP,
∴A1B=A1P,
∴Q为BP的中点,且,又A1E=1,
在Rt△A1EQ中,,
∴∠EA1Q=60°,
∴直线A1E与平面A1BP所成的角为60°
在图3中,过F作FM⊥A1P与M,连接QM,QF,
∵CP=CF=1,∠C=60°,
∴△FCP是正三角形,
∴PF=1.有
∴PF=PQ①,
∵A1E⊥平面BEP,
∴A1E=A1Q,
∴△A1FP≌△A1QP从而∠A1PF=∠A1PQ②,
由①②及MP为公共边知△FMP≌△QMP,
∴∠QMP=∠FMP=90°,且MF=MQ,
从而∠FMQ为二面角B-A1P-F的平面角.
在Rt△A1QP中,A1Q=A1F=2,PQ=1,又∴.
∵MQ⊥A1P,∴
∴
在△FCQ中,FC=1,QC=2,∠C=60°,由余弦定理得
在△FMQ中,
∴二面角B-A1P-F的大小为
解析
解:解法一:不妨设正三角形ABC的边长为3
(1)在图1中,取BE中点D,连接DF.AE:EB=CF:FA=1:2
∴AF=AD=2而∠A=60°,
∴△ADF是正三角形,又AE=DE=1,
∴EF⊥AD在图2中,A1E⊥EF,BE⊥EF,
∴∠A1EB为二面角A1-EF-B的平面角.由
题设条件知此二面角为直二面角,A1E⊥BE,又BE∩EF=E(2)
∴A1E⊥平面BEF,
即A1E⊥平面BEP
(3)在图2中,A1E不垂直A1B,
∴A1E是平面A1BP的垂线,又A1E⊥平面BEP,
∴A1E⊥BE.
从而BP垂直于A1E在平面A1BP内的射影(三垂线定理的逆定理)设A1E在平面A1BP内的射影为A1Q,且A1Q交BP于点Q,则∠E1AQ就是A1E与平面A1BP所成的角,且BP⊥A1Q.
在△EBP中,BE=EP=2而∠EBP=60°,
∴△EBP是等边三角形.又A1E⊥平面BEP,
∴A1B=A1P,
∴Q为BP的中点,且,又A1E=1,
在Rt△A1EQ中,,
∴∠EA1Q=60°,
∴直线A1E与平面A1BP所成的角为60°
在图3中,过F作FM⊥A1P与M,连接QM,QF,
∵CP=CF=1,∠C=60°,
∴△FCP是正三角形,
∴PF=1.有
∴PF=PQ①,
∵A1E⊥平面BEP,
∴A1E=A1Q,
∴△A1FP≌△A1QP从而∠A1PF=∠A1PQ②,
由①②及MP为公共边知△FMP≌△QMP,
∴∠QMP=∠FMP=90°,且MF=MQ,
从而∠FMQ为二面角B-A1P-F的平面角.
在Rt△A1QP中,A1Q=A1F=2,PQ=1,又∴.
∵MQ⊥A1P,∴
∴
在△FCQ中,FC=1,QC=2,∠C=60°,由余弦定理得
在△FMQ中,
∴二面角B-A1P-F的大小为
如图棱柱ABCD-A1B1C1D1的底面是菱形,平面AA1C1C⊥平面ABCD;
(Ⅰ)求证:BD⊥AA1;
(Ⅱ)设AB=a,∠BAC=30°,四边形AA1C1C的面积为3a2,求棱柱ABCD-A1B1C1D1的体积、
正确答案
证明:(Ⅰ)∵棱柱ABCD-A1B1C1D1的底面是菱形,
∴AC⊥BD,
又∵平面AA1C1C⊥平面ABCD
∴BD⊥平面AA1C1C
又由AA1⊂平面AA1C1C
∴BD⊥AA1;
(Ⅱ)∵AB=a,∠BAC=30°,
则AC=,BD=a
∴SABCD=2×AB•AD•sin∠A=
又四边形AA1C1C的面积为3a2,
∴AA1=,
∴V=AA1•SABCD=
解析
证明:(Ⅰ)∵棱柱ABCD-A1B1C1D1的底面是菱形,
∴AC⊥BD,
又∵平面AA1C1C⊥平面ABCD
∴BD⊥平面AA1C1C
又由AA1⊂平面AA1C1C
∴BD⊥AA1;
(Ⅱ)∵AB=a,∠BAC=30°,
则AC=,BD=a
∴SABCD=2×AB•AD•sin∠A=
又四边形AA1C1C的面积为3a2,
∴AA1=,
∴V=AA1•SABCD=
如图,已知ABCD是矩形,E是以CD为直径的半圆周上一点,且平面CDE⊥平面ABCD,求证:CE⊥平面ADE.
正确答案
证明:平面ABCD⊥平面CDE,ABCD为矩形,所以AD⊥平面CDE,
因为点E在直径为CD的半圆上,所以CE⊥ED,
所以CE⊥平面ADE.
解析
证明:平面ABCD⊥平面CDE,ABCD为矩形,所以AD⊥平面CDE,
因为点E在直径为CD的半圆上,所以CE⊥ED,
所以CE⊥平面ADE.
若直线a与b异面,则过a且与b垂直的平面( )
正确答案
解析
解:如果直线a与直线b垂直时,根据线面垂直的判定定理可知存在唯一一个平面满足条件;
当直线a与直线b不垂直时,如果找到过a且与b垂直的平面,则b垂直平面内任一直线,而a在平面内,则直线a与直线b垂直,这与条件矛盾,故不存在;
故选B
已知a,b表示不同的直线,α、β表示不同的平面,现有下列命题:①⇒b∥α②
⇒a⊥b
③⇒a⊥α④
⇒a∥β.其中真命题有( )
正确答案
解析
解:①若a∥b,a∥α,则b∥α或b⊂α,故①不正确;
②设经过b的平面与α交于c,则b∥c,∵a⊥α,∴a⊥c,∵b∥c,∴a⊥b,故②正确;
③∵a⊥b,b∥α,∴a有可能在α内,或与α平行,或与α相交,故③不正确;
④若a∥α,α∥β,则a∥β或a⊂β,故④不正确.
故选A.
扫码查看完整答案与解析