- 动能定理的应用
- 共327题
如图甲所示,静止在水平地面上的物块A,受到水平拉力F的作用,F与时间t的关系如图乙所示。设物块与地面间的最大静摩擦力fm的大小与滑动摩擦力大小相等。则
正确答案
解析
略
知识点
如图所示,空间有一场强为E、水平向左的匀强电场,一质量为m、电荷量为+q的滑块(可视为质点)在粗糙绝缘水平面上由静止释放,在电场力的作用下向左做匀加速直线运动,运动位移为L时撤去电场。设滑块在运动过程中,电荷量始终保持不变,已知滑块与水平面间的动摩擦因数为μ。
(1)画出撤去电场前滑块运动过程中的受力示意图,并求出该过程中加速度a的大小;
(2)求滑块位移为L时速度v的大小;
(3)求撤去电场后滑块滑行的距离x。
正确答案
见解析。
解析
(1)滑块沿轨道向左运动过程中的受力如图所示。
根据牛顿运动定律:
又因为
所以
(2)物块向左做匀加速直线运动,根据运动学公式:
所以
(3)滑块在导轨运动的整个过程中,根据动能定理有
知识点
如图所示,一半径为R的圆弧形轨道固定在水平地面上,O为最低点,轨道末端A、B两点距离水平地面的高度分别为h和2h,h<<R。分别从A、B两点同时由静止释放甲、乙两个完全相同的小球。不计轨道与球之间的摩擦及空气阻力,不计两球碰撞过程中的机械能损失。
正确答案
解析
略
知识点
如图8所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧。两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动恰能通过轨道最高点。已知圆形轨道的半径R=0.50m,滑块A的质量mA=0.16kg,滑块B的质量mB=0.04kg,两滑块开始下滑时距圆形轨道底端的高度h=0.80m,重力加速度g取10m/s2,空气阻力可忽略不计。求:
(1)A、B两滑块一起运动到圆形轨道最低点时速度的大小;
(2)滑块A被弹簧弹开时的速度大小;
(3)弹簧在将两滑块弹开的过程中释放的弹性势能。
正确答案
见解析。
解析
(1)设滑块A和B运动到圆形轨道最低点速度为v0,对滑块A和B下滑到圆形轨道最低点的过程,根据动能定理,有(mA+mB)gh=(mA+mB)v02
解得:v0=4.0m/s
(2)设滑块A恰能通过圆形轨道最高点时的速度大小为v,根据牛顿第二定律有
mAg=mAv2/R
设滑块A在圆形轨道最低点被弹出时的速度为vA,对于滑块A从圆形轨道最低点运动到最高点的过程,根据机械能守恒定律,有 mAvA2=mAg•2R+
mAv2
代入数据联立解得:vA=5.0 m/s
(3)对于弹簧将两滑块弹开的过程,A、B两滑块所组成的系统水平方向动量守恒,设滑块B被弹出时的速度为vB,根据动量守恒定律,有
(mA+mB)v0=mA vA+mB vB
解得: vB=0
设弹簧将两滑块弹开的过程中释放的弹性势能为Ep,对于弹开两滑块的过程,根据机械能守恒定律,有 (mA+mB)v02 + Ep=
mAvA2
解得:Ep=0.40J
知识点
如图所示,水平面上固定一轨道,轨道所在平面与水平面垂直,其中bcd是一段以O为圆心、半径为R的圆弧,c为最高点,弯曲段abcde光滑,水平段ef粗糙,两部分平滑连接,a、O与ef在同一水平面上。可视为质点的物块静止于a点,某时刻给物块一个水平向右的初速度,物块沿轨道经过c点时,受到的支持力大小等于其重力的倍,之后继续沿轨道滑行,最后物块停在轨道的水平部分ef上的某处。已知物块与水平轨道ef的动摩擦因数为μ,重力加速度为g。
求:
(1)物块经过c点时速度v的大小;
(2)物块在a点出发时速度v0的大小;
(3)物块在水平部分ef上滑行的距离x。
正确答案
见解析。
解析
(1)在c点对物块受力分析,根据牛顿运动定律:
(2)物块A从a到c,根据机械能守恒定律:
(3)设物块A在水平轨道上滑行的距离为x,从e到f,根据动能定理:
知识点
扫码查看完整答案与解析