- 动能定理的应用
- 共327题
如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v0=4 m/s,g取10m/s2。
(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向;
(2)在满足(1)的条件下,小球在最高点P突然离开轻杆沿水平方向飞出,试求小球落到水平轨道位置到轴O的距离;
(3)若解除对滑块的锁定,小球通过最高点时的速度大小v′=2m/s,试求此时滑块的速度大小。
正确答案
(1)小球对轻杆的作用力大小为2N,方向竖直向上
(2)m
(3)v =1m/s
解析
(1)设小球能通过最高点,且此时的速度为v1。在上升过程中,因只有重力做功,小球的机械能守恒。则
得m/s
设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则
得F=2N
由牛顿第三定律可知,小球对轻杆的作用力大小为2N,方向竖直向上
(2)小球飞出后做平抛运动,设运动时间为t
由
到轴O的距离
得m
(3)解除锁定后,设小球通过最高点时的速度为v2。
在上升过程中,系统的机械能守恒,则
得v =1m/s
知识点
光滑水平面上有一边长为l的正方形区域,处在电场强度为E的匀强电场中,电场方向与正方形的某一边平行。一质量为m、带电荷量为+q的小球由某一边的中点,以垂直于该边的水平初速度进入该正方形区域。当小球再次运动到该正方形区域的边缘时,动能的增量不可能为C
正确答案
解析
略
知识点
如图所示,在外力作用下某质点运动的速度v-时间t图像为正弦曲线,由图可判断( )
正确答案
解析
略
知识点
如图所示,半径为R的光滑圆环竖直放置,环上套有质量分别为m和2m的小球A和B,A、B之间用一长为R的轻杆相连。开始时A在圆环的最高点,现将A、B静止释放,则:
正确答案
解析
略
知识点
在竖直平面内有一个粗糙的圆弧轨道,其半径R=0.4m,轨道的最低点距地面高度h=0.45m.一质量m=0.1kg的小滑块从轨道的最高点A由静止释放,到达最低点B时以一定的水平速度离开轨道,落地点C距轨道最低点的水平距离x=0.6m.空气阻力不计,g取10m/s2,
求:
(1)小滑块离开轨道时的速度大小;
(2)小滑块运动到轨道最低点时,对轨道的压力大小;
(3)小滑块在轨道上运动的过程中,克服摩擦力所做的功.
正确答案
见解析。
解析
(1)小滑块离开轨道后做平抛运动,设运动时间为t,初速度为v,则
解得:
(2)小滑块到达轨道最低点时,受重力和轨道对它的弹力为N,根据牛顿第二定律:
解得:
根据牛顿第三定律,轨道受到的压力大小
(3)在滑块从轨道的最高点到最低点的过程中,根据动能定理:
所以小滑块克服摩擦力做功为0.2J。
知识点
扫码查看完整答案与解析