- 演绎推理
- 共822题
对大于或等于2的自然数m的n次方幂有如下分解方式:
22=1+3 32=1+3+5 42=1+3+5+7
23=3+5 33=7+9+11 43=13+15+17+19
根据上述分解规律,则52=__________________;
若m3(m∈N*)的分解中最小的数是21,则m的值为______
正确答案
1+3+5+7+9 5
略
在数列中,a1=2,an+1=4an-3n+1,n∈N*.
(1)证明数列是等比数列;
(2)求数列的前n项和Sn;
(3)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立
正确答案
(1)证明:由题设an+1=4an-3n+1,得
an+1-(n+1)=4(an-n),n∈N+.
又a1-1=1,所以数列是首项为1,且公比为4的等比数列.
(2)由(1)可知an-n=4n-1,于是数列的通项公式为
an=4n-1+n.
所以数列的前n项和Sn=+.
(3)证明:对任意的n∈N+,
Sn+1-4Sn
=+-4
=-(3n2+n-4)≤0.
所以不等式Sn+1≤4Sn,对任意n∈N+皆成立
略
将正△ABC分割成n2(n≥2,n∈N)个全等的小正三角形(图乙,图丙分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列,若顶点A,B,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,求f(3)和f(n).
正确答案
解析:当n=3时,如题图所示分别设各顶点的数用小写字母表示,即由条件知
a+b+c=1,x1+x2=a+b,y1+y2=b+c,z1+z2=c+a.
x1+x2+y1+y2+z1+z2=2(a+b+c)=2,
2g=x1+y2=x2+z1=y1+z2.
6g=x1+x2+y1+y2+z1+z2=2(a+b+c)=2.
即g=而f(3)=a+b+c+x1+x2+y1+y2+z1+z2+g=
1+2+=.
进一步可求得f(4)=5.由上知f(1)中有三个数,f(2)中有6个数,f(3)中共有10个数相加,f(4)中有15个数相加…,若f(n-1)中有an-1(n>1)个数相加,可得f(n)中有(an-1+n+1)个数相加,且由f(1)=1=,f(2)===f(1)+,f(3)==f(2)+,f(4)=5=f(3)+,…
可得f(n)=f(n-1)+,所以
f(n)=f(n-1)+=f(n-2)++=…
=++++f(1)
=+++++=(n+1)(n+2).
略
在等比数列{an}中,若a10=0,则有等式
a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立.类比上述性质,相应地,在等比数列{bn}中,若b9=1,则等式______________成立
正确答案
b1b2·…·bn=b1b2·…·b17-n(n<17,n∈N+)
略
观察下列算式:
13=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,
……
若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=________.
正确答案
45
观察所给算式的规律,我们发现:第一个式子的最后一个数为12+0,第二个式子的最后一个数为22+1,第三个式子的最后一个数为32+2,…,所以第n个式子的最后一个数为n2+n-1,而2013介于442+43和452+44之间,所以m=45
扫码查看完整答案与解析