- 极坐标系
- 共746题
在极坐标系中,直线ρsinθ=与圆ρ=2cosθ相交的弦长为______.
正确答案
直线ρsinθ=的直角坐标方程为:y=
,
圆ρ=2cosθ的直角坐标方程为:x2+y2=2x,即(x-1)2+y2=1,
圆的圆心坐标为(1,0)半径为1,
圆心到直线的距离为:,所以半弦长为:
.
所以弦长为:.
在极坐标系中,直线ρsinθ=与圆ρ=2cosθ相交的弦长为:
.
故答案为:.
在极坐标系中,直线ρsin(θ-)=
与圆ρ=2cosθ的位置关系是______.
正确答案
直线ρsin(θ-)=
即
ρsinθ-
ρcosθ=
,即 x-y+1=0.
圆ρ=2cosθ 即 ρ2=2ρcosθ,即 x2+y2=2x,即 (x-1)2+y2=1,表示以(1,0)为圆心,半径等于1的圆.
圆心到直线的距离为 =
>1=r,故直线和圆相离,
故答案为 相离.
直线(t为参数)被曲线ρ=
cos(θ+
)所截得的弦长为______.
正确答案
把直线(t为参数)消去参数t,化为普通方程为 3x+4y+1=0.
曲线ρ=cos(θ+
) 即 ρ2=
ρ(
cosθ-
sinθ)=ρcosθ-ρsinθ,化为直角坐标方程为 x2+y2-x+y=0,即 (x-
1
2
)2+(y-
1
2
)2=,
表示以(,-
)为圆心,半径等于
的圆.
圆心到直线的距离为 =
,故弦长为2
=
.
在极坐标系(ρ,θ)(0≤θ<2π)中,直线θ=被圆ρ=2sinθ截得的弦的长是______.
正确答案
直线θ= 即 y=x,圆ρ=2sinθ化为直角坐标方程为 x2+y2=2y,即 x2+(y-1)2=1,
表示以(0,1)为圆心,半径等于1的圆.
圆心到直线的距离d==
,故弦长为2
=
,
故答案为 .
(选修4-4:坐标系与参数方程)
在直角坐标系xOy中,椭圆C的参数方程为(φ为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为ρsin(θ+
)=
m(m为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为______.
正确答案
直线l的极坐标方程分别为ρsin(θ+)=
m(m为非零常数)化成直角坐标方程为x+y-m=0,
它与x轴的交点坐标为(m,0),由题意知,(m,0)为椭圆的焦点,故|m|=c,
又直线l与圆O:ρ=b相切,∴=b,
从而c=b,又b2=a2-c2,
∴c2=2(a2-c2),
∴3c2=2a2,∴=
.
则椭圆C的离心率为 .
故答案为:.
扫码查看完整答案与解析