热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 5 分

正方形导体框处于匀强磁场中,磁场方向垂直框平面,磁感应强度随时间均匀增加,变化率为k。导体框质量为m、边长为L,总电阻为R,在恒定外力F作用下由静止开始运动。导体框在磁场中的加速度大小为____________;导体框中感应电流做功的功率为____________。

正确答案

F/m;

k2L4/R

解析

加速度,感应电动势=,感应电流,感应电流做功的功率.

知识点

通电直导线在磁场中受到的力电磁感应中的能量转化
1
题型:简答题
|
简答题 · 16 分

如图甲所示,在水平面上固定有长为L=2m、宽为d=1m的金属“U”型导轨,在“U”型导轨右侧l=0.5m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示。在t=0时刻,质量为m=0.1kg的导体棒以v0=1m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10m/s2)。

(1)通过计算分析4s内导体棒的运动情况;

(2)计算4s内回路中电流的大小,并判断电流方向;

(3)计算4s内回路产生的焦耳热。

正确答案

见解析。

解析

(1)导体棒先在无磁场区域做匀减速运动,有

代入数据解得:,导体棒没有进入磁场区域。

导体棒在1s末已经停止运动,以后一直保持静止,离左端位置仍为

(2)前2s磁通量不变,回路电动势和电流分别为

后2s回路产生的电动势为

回路的总长度为,因此回路的总电阻为

电流为

根据楞次定律,在回路中的电流方向是顺时针方向。

(3)前2s电流为零,后2s有恒定电流,焦耳热为

知识点

牛顿运动定律的综合应用法拉第电磁感应定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 11 分

如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好。求:

(1)细线烧断后,任意时刻两杆运动的速度之比;

(2)两杆分别达到的最大速度。

正确答案

见解析。

解析

设某时刻MN和速度分别为v1、v2。

(1)MN和 动量守恒:mv1-2mv2=0 求出: 

(2)当MN和的加速度为零时,速度最大

受力平衡:BIl=2mg ②

由①②③④得: 

知识点

法拉第电磁感应定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 18 分

如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:

(1)通过cd棒的电流I是多少,方向如何?

(2)棒ab受到的力F多大?

(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?

正确答案

见解析。

解析

(1)棒cd受到的安培力 

棒cd在共点力作用下平衡,则 

由①②式代入数据解得 I=1A,方向由右手定则可知由d到c。

(2)棒ab与棒cd受到的安培力大小相等 Fab=Fcd

对棒ab由共点力平衡有 

代入数据解得 F=0.2N④

(3)设在时间t内棒cd产生Q=0.1J热量,由焦耳定律可知 

设ab棒匀速运动的速度大小为v,则产生的感应电动势 E=Blv ⑥

由闭合电路欧姆定律知 

由运动学公式知,在时间t内,棒ab沿导轨的位移 x=vt⑧

力F做的功 W=Fx⑨

综合上述各式,代入数据解得 W=0.4J

知识点

闭合电路的欧姆定律法拉第电磁感应定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 18 分

如图所示,两根足够长的平行金属导轨固定在倾角=300 的斜面上,导轨电阻不计,间距L=0.4m。导轨所在空间被分成区域I和Ⅱ,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5T,在区域I中,将质量m1=0.1kg,电阻R1=0.1的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10m/s2,问

(1)cd下滑的过程中,ab中的电流方向;

(2)ab将要向上滑动时,cd的速度v多大;

(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少。

正确答案

(1)

(2)

(3)

解析

(1)由流向

(2)开始放置刚好不下滑时,所受摩擦力为最大静摩擦力,设其为,有

                  ①

刚好要上滑时,棒的感应电动势为,由法拉第电磁感应定律有

                       ②

设电路中的感应电流为,由闭合电路欧姆定律有

                      ③

所受安培力为,有

                     ④

此时受到的最大静摩擦力方向沿斜面向下,由平衡条件有

             ⑤

综合①②③④⑤式,代入数据解得

                       ⑥

(3)设棒的运动过程中电路中产生的总热量为,由能量守恒有

         ⑦

                   ⑧

解得

                       ⑨

知识点

闭合电路中的能量转化法拉第电磁感应定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 20 分

导体切割磁感线的运动可以从宏观和微观两个角度来认识。如图所示,固定于水平面的U型导线框处于竖直向下的匀强磁场中,金属直导线MN在于其垂直的水平恒力F作用下,在导线框上以速度v做匀速运动,速度v与恒力F的方向相同:导线MN始终与导线框形成闭合电路。已知导线MN电阻为R,其长度恰好等于平行轨道间距,磁场的磁感应强度为B。忽略摩擦阻力和导线框的电阻。

(1) 通过公式推导验证:在时间内,F对导线MN所做的功W等于电路获得的电能,也等于导线MN中产生的焦耳热Q;

(2)若导线MN的质量m=8.0g,长度L=0.10m,感应电流=1.0A,假设一个原子贡献一个自由电子,计算导线MN中电子沿导线长度方向定向移动的平均速率ve(下表中列出一些你可能会用到的数据);

(3)经典物理学认为,金属的电阻源于定向运动的自由电子和金属离子(即金属原子失去电子后的剩余部分)的碰撞。展开你想象的翅膀,给出一个合理的自由电子的运动模型;在此基础上,求出导线MN中金属离子对一个自由电子沿导线长度方向的平均作用力f的表达式。

正确答案

答案:(1)见解析      (2)       (3)

解析

(1)动生电动势:  ①

电流:  ②

安培力:  ③

做功:  ④

电能:  ⑤

焦耳热:  ⑥

由④⑤⑥可知,

(2)总电子数:

单位体积内的电子数:

  ⑦

(3)从微观角度看,导线中的自由电子与金属离子发生碰撞,可以看做非完全弹性碰撞,自由电子损失的动能转化为焦耳热。

从整体角度看,可视为金属离子对自由电子整体运动的平均阻力导致自由电子动能的损失,即  ⑧

从宏观角度看,导线MN速度不变,力F做功使外界能量完全转化为焦耳热。

时间内,力F做功  ⑨

带入⑦,

带入②③,得

知识点

电磁感应中的能量转化
1
题型:简答题
|
简答题 · 18 分

如图甲所示,MN、PQ是固定于同一水平面内相互平行的粗糙长直导轨,间距L=2.0m,R是连在导轨一端的电阻,质量m=1.0kg的导体棒ab垂直跨在导轨上,电压传感器与这部分装置相连。导轨所在空间有磁感应强度B=0.50T、方向竖直向下的匀强磁场。从t=0开始对导体棒ab施加一个水平向左的拉力,使其由静止开始沿导轨向左运动,电压传感器测出R两端的电压随时间变化的图线如图乙所示,其中OA、BC段是直线,AB段是曲线。假设在1.2s以后拉力的功率P=4.5W保持不变。导轨和导体棒ab的电阻均可忽略不计,导体棒ab在运动过程中始终与导轨垂直,且接触良好。不计电压传感器对电路的影响。g取10m/s2

求:

(1)导体棒ab最大速度vm的大小;

(2)在1.2s~2.4s的时间内,该装置总共产生的热量Q;

(3)导体棒ab与导轨间的动摩擦因数μ和电阻R的值。

正确答案

见解析。

解析

(1)从乙图可知,t=2.4s时R两端的电压达到最大,Um=1.0V,由于导体棒内阻不计,故Um=Em=BLvm=1.0V,

所以                                   ①               

(2)因为,而B、L为常数,所以,在0~1.2s内导体棒做匀加速直线运动。设导体棒在这段时间内加速度为a。设t1=1.2s时导体棒的速度为v1,由乙图可知此时电压U1=0.90V。

因为        ②

所以     

在1.2s~2.4s时间内,根据功能原理

  ③

所以      J                 

(3)导体棒做匀加速运动的加速度

当t=1.2s时,设拉力为F1,则有

同理,设t=2.4s时拉力为F2,则有

根据牛顿第二定律有

                          ④

                              ⑤

          ⑥

又因为                           ⑦

                     ⑧

                     ⑨

由④⑤⑥⑦⑧⑨,代入数据可求得:

R=0.4Ω,

知识点

闭合电路的欧姆定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 18 分

11.如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q。线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g;求

(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的 几倍

(2)磁场上下边界间的距离H

正确答案

(1)设磁场的磁感应强度大小为B,cd边刚进磁场时,线框做匀速运动的速度为v1

E1=2Blv1                                ①

设线框总电阻为R,此时线框中电流为I1,闭合电路欧姆定律,有

设此时线框所受安培力为F1,有

由于线框做匀速运动,其受力平衡,有

mg=F1                                      

由①②③④式得

设ab边离开磁场之前,线框做匀速运动的速度为v2,同理可得

由⑤⑥式得

v2=4v1                               ⑦

(2)线框自释放直到cd边进入磁场前,有机械能守恒定律,有

2mgl=1/2m                         ⑧

线框完全穿过磁场的过程中,由能量守恒定律,有

由⑦⑧⑨式得

解析

解析已在路上飞奔,马上就到!

知识点

通电直导线在磁场中受到的力法拉第电磁感应定律电磁感应中的能量转化
1
题型:简答题
|
简答题 · 19 分

11.如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ。均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止。空间有方向竖直的匀强磁场(图中未画出)。两金属棒与导轨保持良好接触。不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g。

(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;

(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;

(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止。求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离。

正确答案

(1)设ab棒的初动能为Ek, ef棒和电阻R在此过程产生的热量分别为W和W1,有

W+ W1=Ek                              

且                      W=W1                                   

由题有                    E1=        ③

得                        W=         ④

说明:①②③④式各1分。

(2)设在题设工程中,ab棒滑行时间为△t,扫过的导轨间的面积为△S,通过△S的磁通量为

△φ, ab棒产生的电势能为E,ab棒中的电流为I,通过ab棒某横截面的电量为q,则

E=            ⑤

且                      △φ=B△S          ⑥

I=              ⑦

又有                    I=             ⑧

由图所示            △S=d(L-dcotθ)       ⑨

联立⑤-⑨,解得q=         ⑩

说明:⑤⑥⑦⑧⑨⑩式各1分。

(3)ab棒滑行距离为x时,ab棒在导轨间的棒长Lx

Lx=L-2xcotθ                ⑪

此时,ab棒产生的电势能Ex为         Ex =Bv2L                 ⑫

流过ef棒的电流Ix为                  Ix=                   ⑬

ef棒所受安培力Fx为                 Fx=B Ix L                 ⑭

联立 ⑪-⑭,解得                 Fx =             ⑮

由⑮式可得,Fx在x=0和B为最大值Bm时有最大值F1

由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图所示,图中fm为最大静摩擦力,有

F1cosα=mgsinα+μ(mgcosα+ F1sinα)           ⑯

联立⑮⑯,得Bm              ⑰

⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下。

由⑮式可知,B为Bm时,Fx随x增大而减小,x为最大xm时,Fx为最小值F2,由图可知

F2cosα+μ(mgcosα+ F2sinα)= mgsinα           ⑱

联立⑮⑰⑱,得

xm                       ⑲

说明:⑫⑭⑮⑯⑱⑲式各得1分,⑰2分,正确说明磁场方向得1分。

解析

解析已在路上飞奔,马上就到!

知识点

闭合电路的欧姆定律电磁感应中的能量转化
1
题型: 多选题
|
多选题 · 6 分

如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B。将质量为m的导体棒由静止释放,当速度达到时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P,导体棒最终以的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g,下列选项正确的是(    )

A

B

C当导体棒速度达到时加速度为

D在速度达到以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功

正确答案

A,C

解析

当速度达到时开始匀速运动,受力分析可得,导体棒最终以的速度匀速运动时,拉力为,所以拉力的功率为,选项A正确B错误。当导体棒速度达到时安培力,加速度为,选项C正确。在速度达到以后匀速运动的过程中,根据能量守恒定律,R上产生的焦耳热等于拉力所做的功加上重力做的功,选项D错误,

知识点

电功、电功率电磁感应中的能量转化
下一知识点 : 交变电流
百度题库 > 高考 > 物理 > 电磁感应

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题