- 直线的倾斜角与斜率
- 共186题
14.过点(-1, 0)的直线l与圆C:交于A,B两点,若△ABC为等边三角形,则直线l的斜率为 .
正确答案
;
解析
设过点(-1, 0)的直线方程为y=k(x+1),因为△ABC为等边三角形,的圆心坐标为(2,0),根据圆心到直线的距离d=
,所以得直线的斜率为
。
考查方向
解题思路
本题利用三角形是等边三角形最后求出斜率。
易错点
不会转化为所学知识来解答。
知识点
11. 直线与抛物线
交于
两点,
为坐标原点,若直线
的斜率
,
满足
,则
的横截距
正确答案
解析
分别设A.B两点的坐标,分别带入抛物线与直线中,消去参数,得到点斜式方程,最后求得定点坐标(此题也可将选项带入验证得到答案)
考查方向
解题思路
将抛物线与直线联立,建立方程求得
易错点
计算能力
知识点
20.如图,椭圆的离心率为
,其左顶点
在圆
上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线与椭圆
的另一个交点为
,与圆
的另一个交点为
.
(i)当时,求直线
的斜率;
(ii)是否存在直线,使得
? 若存在,求出直线
的斜率;若不存在,
说明理由.
正确答案
(Ⅰ);
(Ⅱ)(i);
(ii)不存在直线,使得
.
解析
(Ⅰ)
因为椭圆的左顶点
在圆
上,所以
.
又离心率为,所以
,所以
,
所以,
所以的方程为
.
(Ⅱ)(i)
法一:设点,显然直线
存在斜率,
设直线的方程为
,
与椭圆方程联立得,
化简得到,
因为为上面方程的一个根,所以
,
所以
由,
代入得到,解得
,
所以直线的斜率为
.
(ii)因为圆心到直线的距离为
,
所以.
因为,
代入得到
.
显然,所以不存在直线
,使得
.
法二:(i)设点,显然直线
存在斜率且不为
,
设直线的方程为
,
与椭圆方程联立得,
化简得到,
显然上面方程的一个根,所以另一个根,即
,
由,
代入得到,解得
.
所以直线的斜率为
(ii)因为圆心到直线的距离为
,
所以.
因为,
代入得到
.
若,则
,与直线
存在斜率矛盾,
所以不存在直线,使得
.
考查方向
本题考查了椭圆的综合求解能力,在近几年的各省高考题出现的频率较高.
解题思路
(Ⅰ)由椭圆的左顶点求出a,再有离心率求出c,进而求得b的值;
(Ⅱ)(i)联立方程,利用韦达定理求得 ,再利用弦长公式求得斜率k的值.
(ii)利用垂径定理求解.
易错点
计算量大,易出错.
知识点
19.已知曲线Γ上的点到的距离比它到直线
的距离小2,过
的直线交曲线Γ于
两点。
(1)求曲线Γ的方程;
(2)若,求直线
的斜率;
(3)设点在线段
上运动,原点
关于点
的对称点为
,求四边形
面积的最小值。
正确答案
(1)曲线Γ的方程为;
(2);
(3)min=4
解析
本题综合性较强,题目有一定难度,需要透彻理解抛物线的定义,巧设直线方程,灵活运用一元二次方程根与系数的关系来求。
解:(1)因为点到的距离比它到直线
的距离小2,所以点到
的距离等于点到直线x=-1的距离,所以曲线Γ为根据抛物线,知
,直线x=-1为准线,抛物线方程为
。
(2)设A(x1,y1),B(x2,y2)因为直线过F(1,0),所以设lAB:x=my+1,又因为,所以代入得y2-4my-4=0,因此y1+y2=4m,y1y2=-4,①因为
,所以(1-x1,-y1)=2(x2-1,y2),所以y1=-2y2,②由①②解得m=
,所以kAB=
=
;(3) 因为原点
与点C关于点
对称,所以点O与点C到直线AB的距离相等,所以
=|y1-y2|=
=
.所以
的最小值为4。
考查方向
本题是一个综合性很强的题目,考查了抛物线的定义,直线的斜率、向量的坐标式、一元二次方程根与系数关系等知识,在抛物线、向量、方程根等处进行了交汇,有一点的难度,考查了学生对基础知识的掌握能力、综合运用能力。
易错点
第二问中设直线方程为x=my+1,可以使解题方便,若设y=k(x-1),需要考虑斜率不存在的情况.
知识点
20.已知椭圆上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
。
(Ⅰ)求椭圆的方程;
(Ⅱ)点和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,证明:
,
,
三点共线。
正确答案
(1)椭圆C的方程为
(2)见解析
解析
本题属于直线与椭圆关系的基本问题,题目的难度是逐渐由易到难,
(1)根据题目条件和a、b、c的关系可求
(2)设出两个交点的坐标
(3)根据已知条件,求出斜率关系,最后得出结论。
解:(I)由已知可得a-c=2,b=,又
,解得a=4。故所求椭圆C方程为
.(II)由(I)知A(-4,0),B(4,0),设P(
),Q(
),所以
。
因为P()在椭圆C上,所以
即
,所以
。又因为
所以
①。由已知点Q(
)在圆
上,AB为圆直径,所以
,所以
,由①②可得,
,因为直线PA,QA有共同点A,所以A、P、Q三点共线。
考查方向
本题考查了椭圆的基本性质以及直线与椭圆的位置关系等知识点,考查了学生分析问题与思考问题的能力,直线与圆锥曲线(特别是椭圆)的关系,是高考的重点内容,涉及的知识点较多,运算也比较复杂,对学生的运算能力有较高的要求,有时会与向量、距离、基本不等式、一元二次方程根与系数关系交汇在一起。
易错点
1、椭圆中a、b、c的关系会与双曲线中的搞错
2、第二问证三点共线,通常是证有公共点的两条直线的斜率相等(或者是采用向量的方法)
知识点
正确答案
知识点
扫码查看完整答案与解析