- 数列求和、数列的综合应用
- 共397题
19.
已知数列{an}的首项为1, Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q﹥0,n∈N+
(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;
(Ⅱ)设双曲线x2﹣=1的离心率为en,且e2=2,求e12+ e22+…+en2,
正确答案
知识点
已知数列{an}的首项为1, Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q﹥0,n∈N+
(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;
(Ⅱ)设双曲线x2﹣=1的离心率为en,且e2=2,求e12+ e22+…+en2,
正确答案
(本小题满分12分)
(Ⅰ)由已知, 两式相减得到
.
又由得到
,故
对所有
都成立.
所以,数列是首项为1,公比为q的等比数列.
从而.
由成等差数列,可得
,所以
,故
.
所以.
(Ⅱ)由(Ⅰ)可知,.
所以双曲线的离心率
.
由解得
.所以,
,
知识点
21.设数列的前
项和为
,
,且对任意正整数
,点
在直线
上.
(Ⅰ) 求数列的通项公式;
(Ⅱ)是否存在实数,使得数列
为等差数列?若存在,求出
的值;若不存在,则说明理由。
正确答案
(Ⅰ)由题意可得:
①
时,
②
①─②得,
是首项为
,公比为
的等比数列,
(Ⅱ)解法一:
若为等差数列,
则成等差数列,
得
又时,
,显然
成等差数列,
故存在实数,使得数列
成等差数列.
解法二:
欲使成等差数列,只须
即
便可.
故存在实数,使得数列
成等差数列.
解析
解析已在路上飞奔,马上就到!
知识点
21.已知各项均为正数的数列的前n项和为
,且对任意正整数n,点
都在直线2x-y-1=0上。
(1)求数列的通项公式;
(2)若,设
,求
的前n项和
。
正确答案
(1)由已知 ①
当时,
②
①-② 得
整理得
又n=1时 ,得
是首次
,公比q=2的等比数列
故
(2)由
得
则
=
= ①
②
①-②,得
=
解得
解析
解析已在路上飞奔,马上就到!
知识点
4.在函数的图象上有点列
,若数列
是等差数列,数列
是等比数列,则函数
的解析式可以为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.已知数列中,
且点
在直线
上
(1)求数列的通项公式;
(2)若函数求函数
的最小值;
(3)设表示数列
的前
项和.试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立? 若存在,写出
的解析式,并加以证明;若不存在,试说明理由。
正确答案
相加得:,n≥2
所以。故存在关于n的整式g(x)=n,使得对于一切不小于2的自然数n恒成立。
解析
解析已在路上飞奔,马上就到!
知识点
15.设A和B是抛物线上的两个动点,且在A和B处的抛物线切线相互垂直, 已知由及抛物线的顶点所成的三角形重心的轨迹也是一抛物线, 记为
.对
重复以上过程,又得一抛物线
,余类推.设如此得到抛物线的序列为
,若抛物线的方程为
,经专家计算得
,
,
,
,
.
则=__________。
正确答案
-1
解析
解析已在路上飞奔,马上就到!
知识点
18.设是直线
与圆
在第一象限的交点,则极限
( )
正确答案
解析
当时,
且
,
而由,得
所以
而则为该圆在(1,1)处切线的斜率,
又且
故
.
故选A.
知识点
18. 已知数列的前
项和为
,点
在直线
上,数列
的前n项和为
,且
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,数列
的前
项和为
,求证:
;
正确答案
(1),
;
;(2)见解析.
解析
试题分析:本题属于数列中的基本问题,题目的难度是逐渐由易到难.
解:(Ⅰ)由题意,得 ①
当时,
当时,
②
综上,
又
两式相减,得
数列为等比数列,
.
(Ⅱ)
是递增数列,
考查方向
解题思路
本题考查数列问题,解题步骤如下:
1、利用an与Sn的关系求解。
2、利用等比数列的求和公式求解。
易错点
等比数列分项时项数易错。
知识点
已知数列的前
项和为
,且对任意
,有
,则
();
() 。
正确答案
,
解析
略
知识点
扫码查看完整答案与解析