- 用向量方法解决线线、线面、面面的夹角问题
- 共2973题
.在直角△ABC中,两直角边AC=b,BC=a,CD⊥AB于D,
把这个Rt△ABC沿CD折成直二面角A-CD-B后,
cos∠ACB= .
正确答案
略
如图,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.若G为AD的中点,
⑴求证:BG⊥平面PAD;
⑵求PB与面ABCD所成角.
正确答案
⑴连接BD,在菱形ABCD中,∠DAB=60°,故△ABD为正三角形,又G为AD的中点,所以,BG⊥AD.
△PAD为正三角形,G为AD的中点,所以,PG⊥AD 又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,所以,PG⊥面ABD,故 PG⊥BG
所以,BG⊥平面PAD.
(2)易知△PBG为等腰直角三角形,可知PB与面ABCD所成角为45。
略
如图,已知点P是三角形ABC外一点,且,
,
,
.
(1)求证:;
(2)求二面角的大小;
正确答案
(1)证明 取中点
,连结
.
,
.
,
.
,
平面
.
平面
,
.
(2)解,
,
.
又,
.
又,即
,且
,
平面
.
取中点
.连结
.
,
.
是
在平面
内的射影,
.
是二面角
的平面角.
在中,
,
,
,
.
二面角
的大小为
.
略
已知A是△BCD所在平面外的点,∠BAC=∠CAD=∠DAB=60°,AB=3,AC=AD=2.
(1)求证:AB⊥CD; (2)求AB与平面BCD所成角的余弦值.
正确答案
(1)∵∠BAC=∠CAD=∠DAB=60°, AC=AD=2,AB=3, ∴△ABC≌△ABD,BC=BD.取CD的中点M,连AM、BM,则CD⊥AM,CD⊥BM. ∴CD⊥平面ABM,于是AB⊥BD.
(2)过A作于O,∵CD⊥平面ABM,∴CD⊥AO,∴AO⊥面BCD,
∴BM是AB在面BCD内的射影,这样∠ABM是AB与平面BCD所成的角.
在△ABC中,AB=3,AC=2,∠BAC=60°,.
在△ACD中, AC=AD=2,∠CAD=60°,∴△ACD是正三角形,AM=.
在Rt△BCM中,BC=,CM=1,
.
略
如图,若长方体的底面边长为2,高
为4,则异面直线与AD所成角的大小是______________
正确答案
略
扫码查看完整答案与解析