- 数学归纳法证明不等式
- 共359题
某个命题与正整数有关,如果当n=k(k∈N+)时,该命题成立,那么可
推得当n=k+1时命题也成立.现在已知当n=5时,该命题不成立,那么可推得( ).
正确答案
已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明( )
正确答案
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得( )
正确答案
平面内有n条直线(n≥3),其中有且仅有两条直线相互平行,任意三条不过同一点,若用f(n)表示这n条直线交点的个数,则当n≥4时,f(n)="(" )
正确答案
下列代数式(其中k∈N*)能被9整除的是( )
正确答案
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开( )
正确答案
在用数学归纳法证明凸n边形内角和定理时,第一步应验证( )
正确答案
如果命题P(n)对n=k成立,则它对n=k+1也成立,现已知P(n)对n=4不成立,则下列结论正确的是( )
正确答案
用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是( )
正确答案
已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,f(n)都能被m整除,则m的最大值为( )
正确答案
设数列{an}满足a1=a,an+1=an2+a1,M={a∈R|n∈N*,|an|≤2}。
(1)当a∈(-∞,-2)时,求证:aM;
(2)当a∈(0,]时,求证:a∈M;
(3)当a∈(,+∞)时,判断元素a与集合M的关系,并证明你的结论。
正确答案
解:(1)如果a<-2.则|a1|=|a|>2,。
(2)当时,
事实上,①当n=1时,
假设n=k-1时成立(k≥2,k∈N*)
②对
由归纳假设,对任意n∈N*
所以a∈M。
(3)当时,
证明如下:对于任意n≥1
且
对于任意n≥1
所以
当时,
即2,因此
。
如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A,B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交于点N(n,0),则m的像就是n,记作f(m)=n.则在下列说法中正确命题的个数为( )
①f()=1;②f(x)为奇函数;③f(x)在其定义域内单调递增;④f(x)的图象关于点(
,0)对称.
正确答案
用数学归纳法证明不等式2n>n2时,第一步需要验证n0=_____时,不等式成立()
正确答案
用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+)能被9整除”,要利
用归纳法假设证n=k+1时的情况,只需展开( ).
正确答案
用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步
是( ).
正确答案
扫码查看完整答案与解析