- 平面与平面垂直的判定与性质
- 共129题
16.(本小题满分14分)
如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,
.
求证:
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
正确答案
知识点
19.已知在四棱锥S—ABCD中,底面ABCD是平行四边形,若SB丄AC,SA = SC.
(1)求证:平面SBD丄平面
(2)若 AB = 2,SB = 3,cos∠SCB=,∠SAC=60。,求四棱锥 S—ABCD 的体积.
正确答案
如图所示
(1)设AC∩BD=O,
连接SO
因为SA=SC,
所以SO∩SB=S,所以AC⊥平面SBD,
因为AC在平面ABCD内,
所以平面SBD⊥平面ABCD
(2)作SH⊥平面ABCD,即
由(1)知,AC⊥BD,
所以底面ABCD是菱形,
所以BC=AB=2
因为SB=3,cos∠SCB=1/8
所以由余弦定理可得,
SC=2,所以∠SAC=60°,
所以SAC是等边三角形
所以在Rt△SOH中,SH=SO*sin60°=3/2
所以
解析
证AC垂直于面ABCD,
设AC交BD于0,
因为SA=SC,
SO交SB于S,
所以AC垂直于平面SBD,
因为AC在平面ABCD内,
所以面SBD垂直于面ABCD.求底面面积时,
先用余弦定理求出角SOB=120度,角SOH=60度,
所以四棱锥的体积为
考查方向
立体几何中的相关计算和证明
解题思路
通过线线垂直得到线面垂直,进而得到面面垂直,找清四棱锥的底面和高,利用公式求解。
易错点
面面垂直概念混淆,立体感不强
知识点
16. 多面体ABCDEF(如图甲)的俯视图如图乙,己知面ADE为正三角形.
(1)求多面体ABCDEF的体积;
(2)求证:平面ACF⊥平面BDF.
正确答案
(1);
(2)略.
解析
试题分析:本题属于立体几何中的基本问题,题目的难度是逐渐由易到难.
(1)分别取AB、CD的中点M、N,连接EM、EN、MN,多面体体积转化为棱柱AED-MFN的体积V1与四棱锥F-MBCN的体积V2之和。
由三视图可知,AD=2,AM=DN=1,面ADE为正三角形且垂直于底面ABCD,知F点到底面的距离为。所以V=V1+V2=
+
/3=
.
考查方向
本题考查了立体几何中的体积和面面垂直的问题.属于高考中的高频考点。
解题思路
本题考查立体几何中的体积和面面垂直的问题,解题步骤如下:
(1)做辅助线,拆分多面体。
(2)转化为证明线面垂直。
易错点
(1)第一问中的多面体的拆分。
(2)第二问中的面面垂直的转化。。
知识点
19.如图,四棱柱的底面
是平行四边形,且
,
,
,
为
的中点,
平面
.
(Ⅰ)证明:平面平面
;
(Ⅱ)若,试求异面直线
与
所成角的余弦值.
正确答案
见解析
解析
试题分析:本题属于立体几何中的基本问题,题目的难度是逐渐由易到难.
试题解析:(Ⅰ)依题意∴
是正三角形,
,
∵⊥平面
,
平面
,
平面
平面
,∴平面
平面
.
(Ⅱ)取的中点
,连接
、
,连接
中,
是中位线,
,
∴四边形是平行四边形,可得
可得(或其补角)是异面直线
与
所成的角.
,
即异面直线与
所成角的余弦值为
.
考查方向
本题考查了立体几何中的面面垂直和异面直线所成的角的问题.属于高考中的高频考点。
解题思路
本题考查立体几何,解题步骤如下:
(1)转化为证明线面垂直。
(2)找到三角形,利用余弦定理求解。
易错点
(1)第一问中的面面垂直的转化。(2)第二问中异面直线所成的角求解时要找到适当的三角形。
知识点
正确答案
知识点
扫码查看完整答案与解析