热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

(本小题满分10分)选修4-1:几何证明选讲

如图,的角平分线的延长线交它的外接圆于点.

(Ⅰ)证明:

(Ⅱ)若的面积,求的大小.

正确答案

(Ⅰ)证明见解析

(Ⅱ)90°

本题主要考查平面几何中与圆有关的定理及性质的应用、三角形相似及性质的应用.

证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD

因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD

故△ABE∽△ADC

(Ⅱ)因为△ABE∽△ADC,所以,即AB·ACAD·AE

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE

则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.

【点评】在圆的有关问题中经常要用到弦切角定理、圆周角定理、相交弦定理等结论,解题时要注意根据已知条件进行灵活的选择,同时三角形相似是证明一些与比例有关问题的的最好的方法.

1
题型:简答题
|
简答题

如图,在四边形ABCD中,

正确答案

解:在△ABC中,由余弦定理得:

解得BD=16或BD=-6(舍) ————————5分

在△BCD中,由正弦定理得:

解得 BC= ——————————————10分

1
题型:简答题
|
简答题

如图,△ABC中,AB=AC,∠BAC=90°,AE=AC,BD=AB,点F在BC上,且CF=BC.求证:

(1)EF⊥BC;

(2)∠ADE=∠EBC.

正确答案

(1)见解析    (2)见解析

证明:设AB=AC=3a,

则AE=BD=a,CF=a.

(1)

又∠C为公共角,故△BAC∽△EFC,

由∠BAC=90°.∴∠EFC=90°,∴EF⊥BC.

(2)由(1)得EF=a,

.∵∠DAE=∠BFE=90°,

∴△ADE∽△FBE,∴∠ADE=∠EBC.

1
题型:简答题
|
简答题

如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于AB的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BDCD.

 

(1)求证:BD平分∠CBE

(2)求证:AH·BHAE·HC.

正确答案

(1)见解析(2)见解析

(1)由弦切角定理知∠DBE=∠DAB.

又∠DBC=∠DAC,∠DAB=∠DAC

所以∠DBE=∠DBC,即BD平分∠CBE.

(2)由(1)可知BEBH

所以AH·BHAH·BE

因为∠DAB=∠DAC,∠ACB=∠ABE

所以△AHC∽△AEB

所以,即AH·BEAE·HC

AH·BHAE·HC.

1
题型:简答题
|
简答题

已知分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得分别是的外接圆和内切圆.

正确答案

证:如图,设分别是的外接圆和内切圆半径,延长,则,延长;则,即

分别作的切线上,连,则平分,只要证,也与相切;

,则的中点,连,则

所以,由于在角的平分线上,因此点的内心,(这是由于,,而

,所以,点的内心).即弦相切.

百度题库 > 高考 > 数学 > 平行射影

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题