- 与球体有关的内切、外接问题
- 共43题
16.已知四棱锥P-ABCD的五个顶点均在同一个球面上,该四棱锥的三视图如图,则在球内任取一点Q,则点Q在四棱锥P-ABCD内的概率为_________
正确答案
解析
由三视图可知,四棱锥P-ABCD放在长方体中如图所示,
外接球的半径为R=PC=2,
所以外接球的体积V球=,V四棱锥P-ABCD=
故所求概率P=
知识点
10.点A,B,C,D在同一个球的球面上,AB = BC = AC=,若四面体ABCD体积的最大值为,则这个球的表面积为 ( )
正确答案
解析
AB=BC=AC=√3∴四面体ABCD体积最大时,D在ABC的另一个半球内正△ABC面积=3√3/4∴高=4∴D到面ABC距离=4ABC所在面的圆心为O'球心为O∴O'A=O'B=O'C=2√3×√3×sin60°=1设球的半径为R勾股定理得(4-R)²+1²=R²解得R=17/8∴表面积=4πR²=289/16所以选C
考查方向
本题主要与球体有关的计算、四面体体积最值问题。属于较难题
解题思路
先找到四面体体积最大时球的半径,然后再求表面积
易错点
找不到四面体体积最大时的情况,忘记球表面积计算公式
知识点
15. 在四棱锥中,,若四边形为边长为2的正方形,,则此四棱锥外接球的表面积为 .
正确答案
解析
根据已知条件,可求外接球的半径为,
所以表面积,
所以表面积为
考查方向
解题思路
先根据已知条件求外接球的半径,然后根据表面积公式求外接球的表面积
易错点
求外接球的半径
知识点
16.一个几何体由八个面围成,每个面都是正三角形,有四个顶点在同一平面内且为正
方形,若该八面体的棱长为2,所有顶点都在球O上,则球O的表面积为 .
正确答案
8π
解析
由题意知该八面体为两个等大的正四棱锥底面相对而成,由于八面体所以顶点都在同一个球面上,所以球O的球心在正四面体的底面中心处,此时O到所以顶点的距离均为,即为球O的半径,所以球O的表面积为。
考查方向
解题思路
1.先明确题中给出的八面体的形状;
2.根据几何体的形状找到球心在正四棱锥底面中心处,进而求出球的半径,最后求出球的体积。
易错点
1.对于题中出现的八面体想象不出来是什么形状导致根本无从下手;
2.对于几何体外接球的球心的位置确定不了。
知识点
12. 四面体的四个顶点都在球的球面上, ,, ,平面,则球的表面积为( )
正确答案
解析
如图,
为等边三角形,边长为1,则它的外接圆直径BE=,连接AE,则AE即为大圆的直径,,所以得到大圆半径为,所以球的表面积为
考查方向
解题思路
因为AB平面BCD,所以AB所对的弦就是球的直径,然后求出直径
易错点
没有注意到垂直问题,以致于不能找出球的直径
知识点
扫码查看完整答案与解析