热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

如图所示,两平行光滑导轨相距为L=20cm,金属棒MN的质量为m=10g,电阻R=9Ω,匀强磁场的磁感应强度B=T,方向竖直向下,电源电动势E=10V,内阻r=1Ω,当开关S闭合时,MN恰好平衡,求变阻器R1的取值为多少?设θ=60°,g取10m/s2

正确答案

解:金属棒受重力mg、支持力N、安培力F的作用,力图如图:

MN受力平衡,所以:mgsinθ=BILcosθ…①

由闭合电路欧姆定律得:I=…②

由①②代入数据得:R1=10Ω;

答:变阻器R1的取值为10Ω.

解析

解:金属棒受重力mg、支持力N、安培力F的作用,力图如图:

MN受力平衡,所以:mgsinθ=BILcosθ…①

由闭合电路欧姆定律得:I=…②

由①②代入数据得:R1=10Ω;

答:变阻器R1的取值为10Ω.

1
题型:简答题
|
简答题

如图所示,有一匀强磁场,磁感应强度B=1T,有一段长L=0.2m的直导线处于磁场中且垂直磁场方向放置,当导线中通以I=1A的电流时,问:

(1)导线所受安培力的方向与电流方向是垂直还是平行;

(2)导线所受安培力的大小.

正确答案

解:(1)磁场的方向垂直纸面向里,电流的方向水平向右,根据左手定则知,安培力的方向垂直于电流方向向上.

(2)安培力的大小为:F=BIL=1×1×0.2N=0.2N.

答:(1)导线所受安培力的方向与电流方向垂直;

(2)导线所受的安培力大小为0.2N.

解析

解:(1)磁场的方向垂直纸面向里,电流的方向水平向右,根据左手定则知,安培力的方向垂直于电流方向向上.

(2)安培力的大小为:F=BIL=1×1×0.2N=0.2N.

答:(1)导线所受安培力的方向与电流方向垂直;

(2)导线所受的安培力大小为0.2N.

1
题型:简答题
|
简答题

(2015秋•天津期末)如图所示,电源电动势E=2V,内电阻r=0.5Ω,竖直平面内的导轨电阻可忽略,金属棒

的质量m=0.1kg,电阻R=0.5Ω,它与导轨间的动摩擦因数µ=0.4,有效长度为L=0.2m.为了使金属棒能够靠在竖直导轨外面静止不动,我们施加一竖直方向的匀强磁场,问磁场方向是向上还是向下?磁感应强度B至少应是多大?设滑动摩擦力等于最大静摩擦力.(重力加速度g=10m/s2

正确答案

解:根据平衡条件知金属棒受向里的安培力,由左手定则知磁场方向竖直向下;                          

安培力:F=BIL

电流强度:

由平衡条件:水平方向有:FN=F

竖直方向:μFN=mg

解得:B===6.25T

答:磁场方向竖直向下,大小为6.25T.

解析

解:根据平衡条件知金属棒受向里的安培力,由左手定则知磁场方向竖直向下;                          

安培力:F=BIL

电流强度:

由平衡条件:水平方向有:FN=F

竖直方向:μFN=mg

解得:B===6.25T

答:磁场方向竖直向下,大小为6.25T.

1
题型:简答题
|
简答题

如图所示,金属棒MN的质量m=5.0×10-3kg放在宽度为L=1.0m的两根水平放置的相互平行的导电轨道末端,导电轨道距离地面高h=0.8m,并处于竖直向上的磁感应强度B=0.5T的匀强磁场中,另外,图中电源的电动势ε=16V,电容器的电容C=200μF,先将开关K倒向1,当电容器充电结束后将开关倒向2,金属棒突然向右水平运动,已知下落过程中MN沿水平方向运动距离S=8cm,求此时电容器剩余的电压.(g取10m•s-2

正确答案

解:对于金属棒平抛运动的过程,有:

   h=,得 t===0.4s

平抛运动的初速度 v0===0.2m/s

对开关闭合过程,对棒运用动量定理得:

  BIL•△t=mv0

又 q=I△t

解得通过棒的电量 q==C=2×10-3C

电容器原来的电量 Q=Cɛ=2×10-4×16C=3.2×10-3C

则开关闭合后,电容器剩余电量 q′=Q-q=1.2×10-3C

剩余的电压 U==V=6V

答:此时电容器剩余的电压是6 V.

解析

解:对于金属棒平抛运动的过程,有:

   h=,得 t===0.4s

平抛运动的初速度 v0===0.2m/s

对开关闭合过程,对棒运用动量定理得:

  BIL•△t=mv0

又 q=I△t

解得通过棒的电量 q==C=2×10-3C

电容器原来的电量 Q=Cɛ=2×10-4×16C=3.2×10-3C

则开关闭合后,电容器剩余电量 q′=Q-q=1.2×10-3C

剩余的电压 U==V=6V

答:此时电容器剩余的电压是6 V.

1
题型:简答题
|
简答题

如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E=4.5V、内阻r=0.50Ω的直流电源,另一端接有电阻R=5.0Ω.现把一个质量为m=0.040kg的导体棒ab放在金属导轨上,导体棒静止.导体棒与金属导轨垂直、且接触良好,与金属导轨接触的两点间的导体棒的电阻R0=5.0Ω,金属导轨电阻不计,g取10m/s2.已知sin37°=0.60,cos37°=0.80,求:

(1)导体棒受到的安培力大小;

(2)导体棒受到的摩擦力大小及方向.

正确答案

解:(1)因R=R0=5.0Ω,电阻与导体棒并联,由闭合电路的欧姆定律得总电流为:I===1.5A

导体棒中电流为:I1=I==0.75A

导体棒受到的安培力大小为:F=BI1L=0.50×0.75×0.40N=0.15N

(2)根据左手定则,导体棒受到的安培力沿导轨向上.大小为:F=0.15N

导体棒的重力沿斜面向下的分量为:G1=mgsinθ=0.040×10×sin37°=0.24N

因导体棒处于静止状态,所以沿导轨方向上合力为零,有:

f=G1-F=0.24-0.15=0.09 N.方向沿斜面向上.

答:(1)导体棒受到的安培力大小为0.15N;

(2)导体棒受到的摩擦力大小为0.09N,方向沿斜面向上.

解析

解:(1)因R=R0=5.0Ω,电阻与导体棒并联,由闭合电路的欧姆定律得总电流为:I===1.5A

导体棒中电流为:I1=I==0.75A

导体棒受到的安培力大小为:F=BI1L=0.50×0.75×0.40N=0.15N

(2)根据左手定则,导体棒受到的安培力沿导轨向上.大小为:F=0.15N

导体棒的重力沿斜面向下的分量为:G1=mgsinθ=0.040×10×sin37°=0.24N

因导体棒处于静止状态,所以沿导轨方向上合力为零,有:

f=G1-F=0.24-0.15=0.09 N.方向沿斜面向上.

答:(1)导体棒受到的安培力大小为0.15N;

(2)导体棒受到的摩擦力大小为0.09N,方向沿斜面向上.

1
题型:简答题
|
简答题

在磁感应强度为0.5T的匀强磁场中,有一条与磁场方向垂直的通电直导线,电流为2A,长为30cm,则导线所受的安培力有多大?

正确答案

解:导线与磁场垂直,导线受到的安培力为:

F=BIL=0.5×0.3×2N=0.3N;

答:导线和磁场方向垂直时,通电导线所受安培力为0.3N

解析

解:导线与磁场垂直,导线受到的安培力为:

F=BIL=0.5×0.3×2N=0.3N;

答:导线和磁场方向垂直时,通电导线所受安培力为0.3N

1
题型:简答题
|
简答题

如图所示,质量m=0.05kg,长L=0.1m的铜棒,用长度也为L的两根轻软导线水平悬吊在竖直向上的匀强磁场中,磁感应强度B=0.5T.不通电时,轻线在竖直方向,通入电流后,铜棒向外偏转.( g取10m/s2

(1)如果铜棒最终静止时软导线的偏角θ=37°,求棒中电流多大?

(2)如果铜棒向外偏转的最大角度θ=37°,则棒中电流多大?(设摆动过程中流过棒的电流保持不变)

正确答案

解:(1)对铜棒受力分析,受重力、绳的拉力、安培力,侧视图如图(从右向左看):

由图可得:

FTsinθ=F=BIl

解得:I===7.5A

(2)金属棒向外偏转过程中,导线拉力不做功,

安培力F做功为:WF=Fs1=BIL2sin37°…①

重力做功为:WG=-mgs2=-mgl(l-cos37°)…②

由动能定理得:BIL2sin37°-mgl(l-cos37°)=0…③

联立①②③解得:I===3.3A

答:(1)铜棒最终静止时软导线的偏角θ=37°,此棒中恒定电流为7.5A.

(2)铜棒向外偏转的最大角度θ=37°,则棒中电流3.3A.

解析

解:(1)对铜棒受力分析,受重力、绳的拉力、安培力,侧视图如图(从右向左看):

由图可得:

FTsinθ=F=BIl

解得:I===7.5A

(2)金属棒向外偏转过程中,导线拉力不做功,

安培力F做功为:WF=Fs1=BIL2sin37°…①

重力做功为:WG=-mgs2=-mgl(l-cos37°)…②

由动能定理得:BIL2sin37°-mgl(l-cos37°)=0…③

联立①②③解得:I===3.3A

答:(1)铜棒最终静止时软导线的偏角θ=37°,此棒中恒定电流为7.5A.

(2)铜棒向外偏转的最大角度θ=37°,则棒中电流3.3A.

1
题型:简答题
|
简答题

如图所示,宽为l的金属框架和水平面夹角为α,并处于磁感应强度为B的匀强磁场中,磁场方向垂直于框架平面.导体棒ab的质量为m,长度为d置于金属框架上时将向下匀加速滑动,导体棒与框架之间的最大静摩擦力为f.为使导体棒静止在框架上,将电动势为E,内阻不计的电源接入电路,若框架与导体棒的电阻不计,求需要接入的滑动变阻器R的阻值范围.

正确答案

解:导体棒静止在斜面上,导体棒受到的安培力F=BId,I=

当R最小时,导体棒受到的静摩擦力沿斜面向下,达到最大值f,则有

   F=mgsinα+f,又F=BId=

解得  Rmin=

当R最大时,导体棒受到的静摩擦力沿斜面向上,达到最大值f,则有

有F=mgsina-f,F=

解得   Rmax=

解得:≤R≤

答:需要接入的滑动变阻器R的阻值范围是≤R≤

解析

解:导体棒静止在斜面上,导体棒受到的安培力F=BId,I=

当R最小时,导体棒受到的静摩擦力沿斜面向下,达到最大值f,则有

   F=mgsinα+f,又F=BId=

解得  Rmin=

当R最大时,导体棒受到的静摩擦力沿斜面向上,达到最大值f,则有

有F=mgsina-f,F=

解得   Rmax=

解得:≤R≤

答:需要接入的滑动变阻器R的阻值范围是≤R≤

1
题型:简答题
|
简答题

在磁场中某一点,有一根长1cm的通电导线,导线中的电流为5A,这根导线与磁场方向垂直时,所受的安培力为5×10-2N,求

(1)磁感应强度的大小;

(2)若让导线与磁场夹角θ=30°,这点的磁感应强度多大?通电导线受到的安培力多大?

正确答案

解:(1)由安培力大小公式 F=BIL得,

B=

(2)让导线与磁场夹角θ=30°,磁感应强度大小不变.

当夹角θ=30°时

F=BILsinθ=N=2.5×10-2N  

答:(1)磁感应强度大小为1T.(2)磁感应强度大小为1T,安培力大小为2.5×10-2N.

解析

解:(1)由安培力大小公式 F=BIL得,

B=

(2)让导线与磁场夹角θ=30°,磁感应强度大小不变.

当夹角θ=30°时

F=BILsinθ=N=2.5×10-2N  

答:(1)磁感应强度大小为1T.(2)磁感应强度大小为1T,安培力大小为2.5×10-2N.

1
题型:简答题
|
简答题

如图所示,用两根细线拴住一根通电直导线,外加一垂直导线的匀强磁场恰能使悬线偏离竖直方向θ角度,已知通电直导线电流大小为I,质量为m,长为l,

(1)在图中作出外加磁场方向的范围.

(2)当外加磁场方向沿______,磁感应强度最小,最小值Bmin=______

(3)当外加磁场方向水平向左时,磁感应强度大小B=______

正确答案

解:(1)因为导体处于平衡状态,故根据共点力平衡可知判断出安培力方向,故根据安培力方向判断出磁场方向

(2)对导体棒受力分析可知外加磁场方向垂直于细线斜向上时最小,为mgsinθ=BminIL

(3)当外加磁场方向水平向左时,由共点力平衡可知mg=BIL

B=

故答案为:(1)如图

(2)磁场方向垂直于细线斜向上,

(3)

解析

解:(1)因为导体处于平衡状态,故根据共点力平衡可知判断出安培力方向,故根据安培力方向判断出磁场方向

(2)对导体棒受力分析可知外加磁场方向垂直于细线斜向上时最小,为mgsinθ=BminIL

(3)当外加磁场方向水平向左时,由共点力平衡可知mg=BIL

B=

故答案为:(1)如图

(2)磁场方向垂直于细线斜向上,

(3)

下一知识点 : 洛伦兹力和显像管
百度题库 > 高考 > 物理 > 安培力与磁电式仪表

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题