热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题

行星绕恒星运动的轨道如果是圆,那么它的轨道的长半轴三次方与公转周期T的平方的比为常数,设,则常数k的大小(  )

A只与行星的质量有关

B只与恒星的质量有关

C与恒星的质量及行星的质量有关

D与恒星的质量及行星的速度有关

正确答案

B

解析

解:A、式中的k只与恒星的质量有关,与行星质量无关,故A错误;

B、式中的k只与恒星的质量有关,故B正确;

C、式中的k只与恒星的质量有关,与行星质量无关,故C错误;

D、式中的k只与恒星的质量有关,与恒星的质量及行星的速度无关,故D错误;

故选B.

1
题型: 多选题
|
多选题

关于行星的运动,以下说法正确的是(  )

A行星轨道的半长轴越短,公转周期就越小

B行星轨道的半长轴越长,公转周期就越小

C水星的半长轴最短,公转周期最大

D海王星离太阳“最远”,绕太阳运动的公转周期最长

正确答案

A,D

解析

解:AB、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.其表达式=k,行星轨道的半长轴越短,公转周期就越小.故A正确,B错误;

C、水星轨道的半长轴最短,公转周期就最小,故C错误;

D、海王星离太阳“最远”,公转周期就最长,故D正确;

故选:AD.

1
题型:填空题
|
填空题

开普勒行星运动定律

第一定律:所有行星绕太阳的轨道都是______,太阳处在椭圆的______

第二定律:对任意一个行星来说,它与太阳的连线______

第三定律:所有行星的椭圆轨道的______都相等.

正确答案

椭圆

焦点

在相同时间内扫过的面积相等

k

解析

解:第一定律的内容为:所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上.

第二定律的内容为:对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等,可知地球绕太阳有近日点和远日点之分,近日点快,远日点慢.

第三定律的内容为:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.其表达式为 =k,则知离太阳较远的行星,围绕太阳转一周的时间长.

故答案为:椭圆,焦点;在相同时间内扫过的面积相等,k.

1
题型:简答题
|
简答题

木星绕太阳运动的周期为地球绕太阳运动周期的12倍,那么,木星绕太阳运动轨道的半长轴是地球绕太阳运动轨道的半长轴的多少倍?

正确答案

解:根据开普勒第三定律,有:

=

木星绕太阳运动的周期为地球绕太阳运动周期的12倍,

解得:==5.24

答:木星绕太阳运动轨道的半长轴是地球绕太阳运动轨道的半长轴的5.24倍.

解析

解:根据开普勒第三定律,有:

=

木星绕太阳运动的周期为地球绕太阳运动周期的12倍,

解得:==5.24

答:木星绕太阳运动轨道的半长轴是地球绕太阳运动轨道的半长轴的5.24倍.

1
题型:简答题
|
简答题

某行星绕太阳运行的椭圆轨道如图所示,F1、F2是椭圆轨道的两个焦点,太阳在焦点F1上,A、B两点是F1、F2连线与椭圆的交点,已知A点到F1的距离为a,B点到F1的距离为b,则行星在A、B两点处的速率之比多大?

正确答案

解:根据开普勒第二定律,也称面积定律即在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的. 当行星从近日点沿椭圆轨道向远日点运动的过程中速率减小,即行星绕太阳运动时,近日点的速度大于远日点的速度,

取极短时间△t,根据“面积”相等:avA.△t=b.vB

可得:

答:行星在A、B两点处的速率之比为b:a

解析

解:根据开普勒第二定律,也称面积定律即在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的. 当行星从近日点沿椭圆轨道向远日点运动的过程中速率减小,即行星绕太阳运动时,近日点的速度大于远日点的速度,

取极短时间△t,根据“面积”相等:avA.△t=b.vB

可得:

答:行星在A、B两点处的速率之比为b:a

下一知识点 : 开普勒第二定律
百度题库 > 高考 > 物理 > 开普勒第一定律

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题