- 圆锥曲线的综合问题
- 共211题
已知直线经过椭圆
的左顶点
和上顶点
,椭圆
的右顶点为
,点
是椭圆上位于
轴上方的动点,直线
,
与直线
分别交于
两点。
(1)求椭圆的方程;
(2)(ⅰ) 设直线,
的斜率分别为
,求证
为定值;
(ⅱ)求线段的长度的最小值。
正确答案
见解析
解析
(1).椭圆 的方程为
. ………3分
(2)(ⅰ)设点的坐标为
,
∴
………5分
∵点在椭圆上,∴
,∴
∴ ………7分
(ⅱ) 设直线的方程为
,
则 且
………9分
∵
∴ 直线的方程为
………10分
∴, ………11分
故, ………12分
∴, …………13分
当且仅当,即
时等号成立,
∴时,线段
的长度取得最小值为
. …………14分
知识点
已知F1,F2分别是椭圆C:的上、下焦点,其中F1也是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
。
(1)求椭圆C1的方程;
(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB相交于点D,与椭圆C1相交于点E,F两点,求四边形AEBF面积的最大值。
正确答案
见解析。
解析
(1)由抛物线C1:x2=4y的焦点,得焦点F1(1,0)。
设M(x0,y0)(x0<0),由点M在抛物线上,
∴,
,解得
,
。
而点M在椭圆C1上,∴,化为
,
联立,解得
,
故椭圆的方程为。
(2)由(1)可知:|AO|=,|BO|=2.设E(x1,y1),F(x2,y2),其中x1<x2,
把y=kx代人,可得
,x2>0,y2=﹣y1>0,且
。
,
,
故四边形AEBF的面积S=S△BEF+S△AEF==
=≤
=
。
当且仅当时上式取等号。
∴四边形AEBF面积的最大值为。
知识点
已知椭圆的离心率为
,直线
与以原点为圆心,
椭圆的短半轴为半径的圆相切。
(1)求椭圆的方程;
(2)设椭圆与曲线
的交点为
、
,求
面积的最大值。
正确答案
见解析
解析
知识点
已知椭圆的右顶点
,离心率为
,
为坐标原点。
(1)求椭圆的方程;
(2)已知(异于点
)为椭圆
上一个动点,过
作线段
的垂线
交椭圆
于点
,求
的取值范围.
正确答案
(1)
(2)
解析
(1)因为 是椭圆
的右顶点,所以
. 又
,所以
.
所以 . 所以 椭圆
的方程为
. ……………3分
(2)当直线的斜率为0时,
,
为椭圆
的短轴,则
.
所以 . ………………………………………5分
当直线的斜率不为0时,设直线
的方程为
,
,
则直线DE的方程为. ………………………………………6分
由 得
. 即
.
所以 所以
………………………………8分
所以 .即
.
类似可求. 所以
………………11分
设则
,
.
令,则
.
所以 是一个增函数.所以
.
综上,的取值范围是
. ………………………………………13分
知识点
设椭圆的左、右焦点分别为
,离心率为
,左焦点
到直线
的距离等于长半轴长。
(1)求椭圆的方程;
(2)过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于点
,求实数
的取值范围。
正确答案
(1)
(2)
解析
(1)由已知可得
,
由到直线的距离为
,所以
, ,,,,,,,,,,,3分
解得
所求椭圆方程为. ,,,,,,,,,,,,,,,,5分
(2)由(1)知, 设直线
的方程为:
消去
得
, ,,,,7分
因为过点
,所以
恒成立
设,
则,
中点
,,,,,,,,,,,,,,,9分 当
时,
为长轴,中点为原点,则
,,,,,,,,,,,,,,10分
当时
中垂线方程
,
令,
,,,,,,,,,11分
,
, 可得
综上可知实数的取值范围是
, ,,,,,,,,,,,,,,13分
知识点
抛物线的顶点在原点焦点在
轴上,且经过点
,圆
过定点
,且圆心
在抛物线
上,记圆
与
轴的两个交点为
。
(1)求抛物线的方程;
(2)当圆心在抛物线上运动时,试问
是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记
,
,求
的最大值。
正确答案
见解析。
解析
(1)
知识点
以双曲线的右焦点为圆心,并与其渐近线相切的圆的标准方程是_______.
正确答案
解析
略
知识点
如图,已知平面内一动点到两个定点
、
的距离之和为
,线段
的长为
(1)求动点的轨迹
的方程;
(2)过点作直线
与轨迹
交于
、
两点,且点
在线段
的上方,
线段的垂直平分线为
①求的面积的最大值;
②轨迹上是否存在除
、
外的两点
、
关于直线
对称,请说明理由。
正确答案
见解析
解析
(1)因为,轨迹是以
、
为焦点的椭圆,
(2)以线段的中点为坐标原点,以
所在直线为
轴建立平面直角坐标系,
可得轨迹的方程为
最大值为
②结论:当时,显然存在除
、
外的两点
、
关于直线
对称
下证当与
不垂直时,不存在除
、
外的两点
、
关于直线
对称
证法1:假设存在这样的两个不同的点
设线段的中点为
直线
由于在
上,故
①
又在椭圆上,所以有
两式相减,得
将该式写为,
并将直线的斜率
和线段
的中点,表示代入该表达式中,
得 ②
①、②得,由(1)
代入
得
即的中点为点
,而这是不可能的.
此时不存在满足题设条件的点和
.
证法2:假设存在这样的两个不同的点
,
则,故直线
经过原点。
直线的斜率为
,则假设不成立,
故此时椭圆上不存在两点(除了点、点
外)关于直线
对称
知识点
若抛物线
的焦点与椭圆
的右焦点重合,则
的值为
正确答案
解析
略
知识点
在平面直角坐标系中,点
到两点
,
的距离之和为
,设点
的轨迹为曲线
.
(1)写出的方程;
(2)设过点的斜率为
(
)的直线
与曲线
交于不同的两点
,
,点
在
轴上,且
,求点
纵坐标的取值范围.
正确答案
(1)的方程为
(2)
解析
(1)由题设知,
根据椭圆的定义,的轨迹是焦点为
,
,长轴长为
的椭圆,
设其方程为
则,
,
,所以
的方程为
. ………5分
(2)依题设直线的方程为
.将
代入
并整理得,
.
. ………6分
设,
,
则,
..………7分
设的中点为
,则
,
,即
. ………8分
因为,
所以直线的垂直平分线的方程为
, ……9分
令解得,
, .………10分
当时,因为
,所以
; .………12分
当时,因为
,所以
. .………13分
综上得点纵坐标的取值范围是
. .………14分
知识点
扫码查看完整答案与解析