- 动能 动能定理
- 共113题
3.一倾角为θ=37°的粗糙斜面与一光滑的半径R=0.9m的竖直圆轨道相切于P点,O 点是轨道圆心,轨道上的B点是最高点,D点是最低点,C点是最右的点,斜面上的A点与B点等高。一质量m=1.0kg的小物块在A点以沿斜面向下的初速度v0刚好能在斜面上匀速运动,通过P点处的小孔进入圆轨道并恰能做完整的圆周运动。g=10m/s2,sin37°=0.6,cos37°=0.8。则下列说法正确的是()
正确答案
解析
A、在B点,由mg=m,得:vB=
=3m/s
从P到B,由机械能守恒定律得:mgR(1+cos37°)+=
解得:v0=m/s>3m/s.故A错误.
B、物块在斜面上做匀速运动,由平衡条件得:mgsin37°=μmgcos37°,得:μ=0.75.故B错误.
C、从D到B的过程,由机械能守恒定律得:mg•2R+=
在D点,由牛顿第二定律得:FD′﹣mg=m
联立解得:FD′=6mg=60N,由牛顿第三定律知,小物块在D点时对轨道压力FD=FD′=60N.故C正确.
D、小物块在C点受到重力和轨道水平向左的弹力,其合外力斜向左下方,故D错误.
考查方向
解题思路
小球从P到B的过程,运用机械能守恒定律列式.在B点,由重力等于向心力列式,联立可求得v0.对AP段,运用平衡条件列式可求得动摩擦因数μ.根据小物块的受力情况,分析在C的合外力方向.由机械能守恒定律求出小物块经过D点的速度,再由牛顿运动定律求小物块对轨道的压力.
易错点
本题的关键要根据物块的运动过程和状态,灵活选取力学规律解答,要知道最高点的临界条件是重力等于向心力.圆周运动中求压力往往根据机械能守恒定律和向心力结合研究.
知识点
一足够长的粗细均匀的杆被一细绳吊于高处,杆下端离地面高H,上端套一个细环,如图所示。断开轻绳,杆和环自由下落,假设杆与地面发生碰撞时触地时间极短,无动能损失,杆立即获得等大反向的速度。已知杆和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力kmg(重力加速度为g,k>1)。杆在整个过程中始终保持竖直,空气阻力不计。求:
18.次与地面碰撞弹起上升的过程中,环的加速度
19.面第二次碰撞前的瞬时速度
20.绳到杆和环静止,摩擦力对环和杆做的总功
正确答案
解析
杆上升过程中,环的加速度为a,则
kmg-mg=ma 得:a=(k-1)g,方向竖直向上 (4分)
考查方向
解题思路
在棒上升的过程中,环要受到重力的作用,同时由于环向下运动而棒向上运动,环还要受到棒的向上的摩擦力的作用,根据牛顿第二定律列式可以求得加速度的大小.
易错点
本题综合性较强,涉及多过程运动分析,难点在于分析棒和环的相对运动,进而得出位移,最后一个重要知识点是摩擦生热的计算,可对系统运用能量守恒定律研究
正确答案
解析
棒第一次落地的速度大小为v1 ,则
得
棒弹起后的加速度为a′,则
mg+kmg=ma′ 得:a′=(k+1)g,方向竖直向下
从落地经时间t1达到共同速度,则
得
共同速度为
棒上升的高度
所以棒第二次落地时的速度 方向竖直向下 (7分)
考查方向
解题思路
在下落的过程中,棒、环系统机械能守恒,由此求得棒第一次落地的速度大小.当棒触地反弹时,环将继续下落,棒、环之间存在相对滑动,由牛顿第二定律求得两者的加速度.由速度时间公式求得环与棒将在空中达到相同速度.由运动学公式求得上升的最大高度.从最高点棒和环一起自由下落,由运动学公式求解棒与地面第二次碰撞前的瞬时速度.
易错点
本题综合性较强,涉及多过程运动分析,难点在于分析棒和环的相对运动,进而得出位移,最后一个重要知识点是摩擦生热的计算,可对系统运用能量守恒定律研究
正确答案
解析
解法一:
在第一次弹起到落地的过程中环下降的高度:
环第一次相对棒的位移为:
第二次弹起经t2达到共同速度,则
得
共同速度为
棒上升的高度
环下降的高度
环第二次相对棒的位移为
以此类推,可得
所以全程环相对杆的位移
摩擦力对环和杆做的总功 (8分)
解法二:
根据能量守恒:
所以
摩擦力对棒和环做的总功为
考查方向
解题思路
整个过程中能量的损失都是由于摩擦力对物体做的功,所以根据能量的守恒可以较简单的求得摩擦力对环及棒做的功.
易错点
本题综合性较强,涉及多过程运动分析,难点在于分析棒和环的相对运动,进而得出位移,最后一个重要知识点是摩擦生热的计算,可对系统运用能量守恒定律研究
6.如图所示,带正电的点电荷被固定于A点。以O点为坐标原点,AO方向为x轴正方向建立如图所示的直线坐标系。现将一个电荷量很小的带正电的点电荷q,从O点由静止释放,在点电荷运动的过程中,下列关于电荷q的动能EK、电势能EP随坐标x变化的图象中(假设O点电势为零,不计粒子的重力),可能正确的是:( )
正确答案
解析
由于同种电荷,所以A对O的作用力为排斥力,所以电场对q做正功,动能增加,在远离过程中,电场力变小,所以动能随位置变化越来越慢,所以A错,B对;由于做正功,所以电势能不断减小,动能变化越来越慢,所以电势能减少越来越慢,所以C错D对。
考查方向
解题思路
通过电场力做功情况来判断电势能的变化情况
易错点
电场力做功与电势能的变化关系
知识点
20.一物体从静止开始做直线运动,其加速度随时间变化如图所示,则
正确答案
解析
选项A,2t0末,物体的速度为应该为3/2a0t0故A错误。
选项B,0~t0内的平均速度由知,为a0t0/2正确。选项C,t0~2t0内的位移由下图v-t图像知道大于5a0t02/4,则C正确。选项D,由v-t图像知道全过程位移应该大于7a0t02/4,但小于a0t02故D错误。
考查方向
解题思路
a-t图像与a轴和t轴围成的图形面积是此时的速度大小。匀变速运动中平均速度为变化位移除以时间或。通过a-t图像画出v-t图像,通过v-t图像判定位移。
易错点
对a-t图的认识不够彻底。
知识点
26.如图所示,一物块(可视为质点)受到一水平向左的恒力F作用在粗糙的水平面上从O点以初速度v0=10m/s 向右运动,运动一段距离后恒力F突然反向,整个过程中物块速度的平方随位置坐标变化的关系图如下图所示,已知物块的质量m=1kg,g=10m/s2,求该恒力F的大小和物块与水平面间的动摩擦因数。
正确答案
7N 0.3
解析
解:0-5m匀减速a1==10m/s2
F+mgμ=ma1
5-13m 匀加速a2==4m/s2
F-mgμ=ma2
得F=7N(2分) μ=0.3(2分)
考查方向
解题思路
通过对物体受力分析知道每个阶段物体的运动状态。列出每个基阶段的牛顿第二定理公式,然后求解。
易错点
不能把和加速度很好的转换。
知识点
16.如图所示,质量相同的三个小球从足够长的斜面上同一点O分别以初速度v1、v2、v3水平抛出,落在斜面上的位置分别为A、B、C,已知OA=AB=BC,空气阻力不计,则( )
正确答案
解析
设物体的初速度为v0,斜面的倾角为α,O点到斜面落点的长度为L,斜面的倾角为θ。
则tanα==
,得t=
①
则有L==
=
,②
小球落在斜面上速度平方为v2==
落到斜面时的动能为Ek==
③
由题,OA=AB=BC,则v1:v2:v3=1::
A错;由于位移方向一致,所以速度方向也一致,B错;由③得,落到斜面时的动能之比为1:2:3.C对;根据动能定理得,飞行过程中动能增量△ Ek=mgLsinθ,上式可知动能增量之比为1:2:3,D错。
考查方向
解题思路
三个小球做平抛运动,运用运动的分解法,得出斜面的长度与初速度、运动时间的关系,再求解初速度、时间的比值。根据动能定理研究动能的增量。
易错点
斜面的倾角反映了位移与水平方向的夹角,关键确定两个方向的位移关系得出时间表达式。
知识点
8.如图所示,相距为L的两块平行金属板从M、N接在输出电压恒为U的高压电源E2上,M、N之间的电场可视为匀强电场,K是与M板距离很近的灯丝,电源E1给K加热从而产生初速度可以忽略不计的热电子.电源E2接通后,电流表的示数稳定为I,已知电子的质量为m、电量为e。则下列说法正确的是()
正确答案
解析
(1)动能定理:,
解出,A对
(2)牛顿定律:e=ma,
解出
由
得:,B错
(3)根据功能关系,在M、N之间运动的热电子的总动能应等于t时间内电流做功的,即Ek总=
UIt=
UI(
)=IL
,C错
(4),所以D对
考查方向
解题思路
(1)根据动能定理求出电子到达N板瞬间的速度大小.
(2)通过牛顿第二定律和运动学公式求出电子从灯丝K出发达到N板所经历的时间.
(3)在M、N之间运动的热电子的总动能应等于t时间内电流做功的,结合功能关系求出电路稳定的某时刻,M、N之间运动的热电子的总动能;
(4)分别求出电子从灯丝出发达到c和d的时间,从而结合电流公式求出电路稳定的某时刻,c、d两个等势面之间具有的电子数.
易错点
本题考查了动能定理、牛顿第二定律和运动学公式的综合运用,关键要正确建立物理模型,依据相关物理规律求解
知识点
8.如图所示,MPQO为有界的竖直向下的匀强电场,电场强度为E,ACB为光滑固定的半圆形轨道,圆轨道半径为R,AB,为圆水平直径的两个端点,AC为圆弧.一个质量为m、电荷量为-q的带电小球,从A点正上方高为H处由静止释放,并从A点沿切线进入半圆轨道.不计空气阻力及一切能量损失,关于带电小球的运动情况,下列说法正确的是
正确答案
解析
A、由于题中没有给出H与R、E的关系,所以小球不一定能从B点离开轨道,故A错误;
B、若重力大小等于电场力,小球在AC部分做匀速圆周运动,故B正确.
C、由于小球在AC部分运动时电场力做负功,所以若小球能从B点离开,上升的高度一定小于H,故C正确;
D、若小球到达C点的速度为零,则电场力大于重力,则小球不可能沿半圆轨道运动,所以小球到达C点的速度不可能为零.故D错误.
考查方向
解题思路
当小球的重力与电场力平衡,小球进入轨道,靠弹力提供向心力,做匀速圆周运动.根据动能定律判断上升的高度与H的关系..通过假设法判断小球到达C点的速度能否为零,若能为零,根据动能定理知,电场力做功做功等于重力做功,则电场力大于重力,无法做圆周运动.
易错点
考查了带电小球在电场和重力场中的运动,综合运用了动能定理、牛顿第二定律等知识
知识点
12.如图所示,质量为m的小球A沿高度为h倾角为θ的光滑斜面以初速v0滑下,另一质量与A相同的小球B自相同高度同时由静止落下,结果两球同时落地。下列说法正确的是:( )
正确答案
解析
根据W=mgh知,重力对两球做功相同.故A错;对A球,根据动能定理得,mgh=,对B球,根据动能定理得,mgh=
,知vA>vB.故B错;两球都做匀变速直线运动,运动时间相等,vA=v0+gsinθt,vB=gt,A球重力做功的瞬时功率P=mg(v0+gsinθt)sinθ,B球重力做功的瞬时功率P′=mgvB=mg2t.知A球的重力瞬时功率小于B球重力的瞬时功率.故C错误.两球重力做功相等,时间相等,根据
知,重力的平均功率相等.故D正确.
考查方向
解题思路
重力做功跟路径无关,只与首末位置的高度差有关;根据动能定理,比较两球落地的速度大小;根据P=mgvcosα及比较重力的瞬时功率和平均功率.
易错点
关键掌握重力做功的特点,以及掌握瞬时功率和平均功率的表达式
知识点
16.某物体以初速度v0从固定斜面的底端沿斜面上滑,斜面足够长,斜面与物体间的动摩擦因数μ=0.5,其动能Ek随离开斜面底端的距离s变化的图线如图所示,g取10m/s2,不计空气阻力,则以下说法正确的是( )
正确答案
解析
A、B、D、设斜面的倾角是θ,物体的质量是m,物体向上运动的过程中受到重力、支持力和向下的摩擦力;物体向下滑动的过程中受到重力.支持力和向上的摩擦力,由图象可知物体向上滑动的过程中,EK1=25J,EK2=0J,位移x=5m,下滑回到原位置时的动能,EK3=5J向上滑动的过程中,由动能定理得:EK2﹣EK1=﹣mgsinθ•x﹣fx,向下滑动的过程中,由动能定理得:EK3﹣EK2=mgsinθ•x﹣fx,代入数据解得f=2N
mgsinθ=3N又:f=μmgcosθ,所以:N,
,所以:θ=37°,
kg.故AB错误, D正确;C、物体向上时的加速度
m/s2,物体向下时的加速度:
m/s2,物体的初速度:
m/s=10m/s物体回到原点的速度:
m/s,向上运动时间t1=
s,向下运动的时间:
s,物体在斜面上运动的总时间t=
s.故C错误.
考查方向
解题思路
对物体进行受力分析,得出物体向上滑动的过程中的受力与物体下滑的过程中的受力,运用动能定理把动能和位移的关系表示出来.
把物理表达式与图象结合起来,根据图象中的数据求出未知物理量.
易错点
利用数学图象处理物理问题的方法就是把物理表达式与图象结合起来,根据图象中的数据求解.一般我们通过图象的特殊值和斜率进行求解
知识点
扫码查看完整答案与解析