热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

飞船降落过程中,在离地面高度为h处速度为v0,此时开动反冲火箭,使船开始做减速运动,最后落地时的速度减为v.若把这一过程当作为匀减速运动来计算,已知地球表面处的重力加速度为g,航天员的质量为m,在这过程中航天员对坐椅的压力等于______.

正确答案

根据速度位移公式v2-v02=2ax得

最后减速阶段下降的加速度大小a=

对航天员进行受力分析,受重力mg和坐椅的支持力N,

根据牛顿第二定律得:

F=N-mg=ma 

N=ma+mg=m+mg

根据牛顿第三定律得:坐椅对宇航员的支持力大小等于航天员对坐椅的压力大小

所以航天员对坐椅的压力大小是m+mg.

故答案为:m+mg

1
题型:简答题
|
简答题

质量为M的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t内前进的距离为s.耙地时,拖拉机受到的牵引力恒为F,受到地面的阻力为自重的k倍,耙所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变.求:

(1)拖拉机的加速度大小.

(2)拖拉机对连接杆的拉力大小.

(3)时间t内拖拉机对耙做的功.

正确答案

(1)拖拉机在时间t内匀加速前进s,根据位移公式,

x=at2=s                                 ①

解得:a=                              ②

(2)设连接杆对拖拉机的拉力为T,对拖拉机受力分析:

由牛顿第二定律得,F-kMg-Tcosθ=Ma        ③

由②③联立得T=     ④

根据牛顿第三定律知,拖拉机对连接杆的拉力大小为T′=T=   ⑤

(3)拖拉机对耙所做的功就是通过连接杆的拉力对耙做功.故拖拉机对耙做的功,W=T'scosθ   ⑥

由⑤⑥两式得w=[F-M(kg+)]s

答:(1)拖拉机的加速度大小是

(2)拖拉机对连接杆的拉力大小是

(3)时间t内拖拉机对耙做的功是[F-M(kg+)]s.

1
题型:简答题
|
简答题

如图所示,一个可视为质点的物块,质量为m=2kg,从光滑四分之一圆弧轨道顶端由静止滑下,到达底端时恰好进入与圆弧轨道底端相切的水平传送带,传送带由一电动机驱动着匀速向左转动,速度大小为u=3m/s.已知圆弧轨道半径R=0.8m,皮带轮的半径r=0.2m,物块与传送带间的动摩擦因数为μ=0.1,两皮带轮之间的距离为L=6m,重力加速度g=10m/s2.求:

(1)皮带轮转动的角速度多大?

(2)物块滑到圆弧轨道底端时对轨道的作用力;

(3)物块将从传送带的哪一端离开传送带?物块在传送带上克服摩擦力所做的功为多大?

正确答案

(1)皮带轮转动的角速度,由u=ωr,得ω==15rad/s. 

(2)物块滑到圆弧轨道底端的过程中,由动能定理得mgR=m

解得v0==4m/s   

在圆弧轨道底端,由牛顿第二定律得  F-mg=m

解得物块所受支持力  F=60N    

由牛顿第三定律,物块对轨道的作用力大小为60N,方向竖直向下. 

(3)物块滑上传送带后做匀减速直线运动,设加速度大小为a,

由牛顿第二定律得  μmg=ma

解得  a=μg=1m/s2

物块匀减速到速度为零时运动的最大距离为  s0==8m>L=6m 

可见,物块将从传送带的右端离开传送带. 

物块在传送带上克服摩擦力所做的功为W=μmgL=12J.

答:

(1)皮带轮转动的角速度15rad/s.

(2)物块滑到圆弧轨道底端时对轨道的作用力为60N;

(3)物块将从传送带的右端离开传送带.物块在传送带上克服摩擦力所做的功为12J

1
题型:简答题
|
简答题

在竖直平面内有一个粗糙的圆弧轨道,其半径R=0.4m,轨道的最低点距地面高度h=0.8m.一质量m=0.1kg的小滑块从轨道的最高点由静止释放,到达最低点时以一定的水平速度离开轨道,落地点距轨道最低点的水平距离x=0.8m.空气阻力不计,g取10m/s2,求:

(1)小滑块离开轨道时的速度大小;

(2)小滑块运动到轨道最低点时,对轨道的压力大小;

(3)小滑块在轨道上运动的过程中,克服摩擦力所做的功.

正确答案

(1)小滑块离开轨道后做平抛运动,设运动时间为t,初速度为v,则

x=vt

h=gt2

解得:v=2.0m/s

(2)小滑块到达轨道最低点时,受重力和轨道对它的弹力为N,根据牛顿第二定律:

N-mg=m

解得:N=2.0N

根据牛顿第三定律,轨道受到的压力大小N'=N=2.0N

(3)在滑块从轨道的最高点到最低点的过程中,根据动能定理:

mgR+Wf=mv2-0

Wf=-0.2J

所以小滑块克服摩擦力做功为0.2J.     

答:(1)小滑块离开轨道时的速度大小为2m/s;

(2)小滑块运动到轨道最低点时,对轨道的压力大小为2N;

(3)小滑块在轨道上运动的过程中,克服摩擦力所做的功为0.2J.

1
题型:简答题
|
简答题

如图所示,火箭栽着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器.火箭从地面起飞时,以加速度竖直向上做匀加速直线运动(g0为地面附近的重力加速度),已知地球半径为R.

(1)到某一高度时,测试仪器对平台的压力是刚起飞时压力的,求此时火箭离地面的高度h.

(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为T0,试问:该行星的平均密度为多少?(假定行星为球体,且已知万有引力恒量为G)

正确答案

(1)火箭刚起飞时,以测试仪为研究对象,受地球引力mg0、平台的支持力N1,有:

N1-mg0=ma=m×

N1=mg0

根据牛顿第三定律,起飞时测试仪器对平台的压力大小为N′=mg0.

设火箭离地高为h时,平台对测试仪器的支持力为N2,则有:N2-=m×,其中G为万有引力恒量,M为地球质量.

在地面附近,有:G=mg0

则:N2=(

R

R+h

)2mg0+=N1=×mg0

于是得到:h=R

(2)设行星质量为M,行星平均密度为ρ,=mR

又有:M=πR3ρ

得:ρ=

答(1)到某一高度时,测试仪器对平台的压力是刚起飞时压力的,此时火箭离地面的高度h为R.

(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为T0,则该行星的平均密度为

下一知识点 : 受力分析
百度题库 > 高考 > 物理 > 牛顿第三定律

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题