- 动量守恒定律
- 共5880题

(1)小金属块与平板车的质量之比
(2)小金属块与平板车上表面间的动摩擦因数;
(3)若小金属块刚好没滑离平板车,则平板车的长度为多少.
正确答案
解:(1)以平板车和小金属块为研究对象,由平板车和小金属块组成的系统不受外力,所以动量守恒:

代入数据得:
(2))以小金属块为研究对象,由动量定理:
-
代入数据得:
(3)设小金属块与平板车最后的共同速度为v,由动量守恒定律:
mv0=(M+m)v
得:
由能量守恒得:
解得:L=
答:(1)小金属块与平板车的质量之比

(2)小金属块与平板车上表面间的动摩擦因数为
(3)若小金属块刚好没滑离平板车,则平板车的长度为
解析
解:(1)以平板车和小金属块为研究对象,由平板车和小金属块组成的系统不受外力,所以动量守恒:

代入数据得:
(2))以小金属块为研究对象,由动量定理:
-
代入数据得:
(3)设小金属块与平板车最后的共同速度为v,由动量守恒定律:
mv0=(M+m)v
得:
由能量守恒得:
解得:L=
答:(1)小金属块与平板车的质量之比

(2)小金属块与平板车上表面间的动摩擦因数为
(3)若小金属块刚好没滑离平板车,则平板车的长度为

(1)A、B两球碰撞后粘合在一起的速度大小;
(2)A、B两球与C碰撞过程中系统损失的机械能.
正确答案
解:(1)A、B相碰过程系统动量守恒,以向右为正方向,由动量守恒定律得:
mvA=2mv1,
代入数据解得:v1=1m/s;
(2)A、B、C碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:
2mv1=mvC+2mv2,
代入数据解得:v2=0.5m/s,
由能量守恒定律可知,B、C碰撞损失的机械能:
△E=


代入数据解得:△E=0.25J;
答:(1)A、B两球碰撞后粘合在一起的速度大小为1m/s;
(2)A、B两球与C碰撞过程中系统损失的机械能为0.25J.
解析
解:(1)A、B相碰过程系统动量守恒,以向右为正方向,由动量守恒定律得:
mvA=2mv1,
代入数据解得:v1=1m/s;
(2)A、B、C碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:
2mv1=mvC+2mv2,
代入数据解得:v2=0.5m/s,
由能量守恒定律可知,B、C碰撞损失的机械能:
△E=


代入数据解得:△E=0.25J;
答:(1)A、B两球碰撞后粘合在一起的速度大小为1m/s;
(2)A、B两球与C碰撞过程中系统损失的机械能为0.25J.
如图甲,在光滑水平面上的两小球发生正碰,小球的质量分别为m1和m2,图乙为它们碰撞前后的位移-时间图象.已知m1=0.1kg,由此可以判断( )
正确答案
解析
解:A、由s-t图示可知,碰后m1的速度:v1′=



B、由s-t(位移时间)图象的斜率得到,碰前m2的位移不随时间而变化,v2=0,m1向速度大小为v1=

碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得:m1v1=m2v2′+m1v1′,解得:m2=

C、碰撞过程中系统损失的机械能为:△E=


故选:BC.


(1)滑块P刚滑上小车时的速度大小.
(2)滑块P与小车组成的系统在整个过程中损失的机械能.
正确答案
解:(1)滑块滑上小车前,滑块与小车组成的系统水平方向动量守恒,系统机械能守恒,
以向右为正方向,由动量守恒定律得:mv1-Mv2=0,
由机械能守恒定律得:mgR=

代入数据,解得:v1=
(2)由于系统水平方向动量守恒,系统初动量为零,由动量守恒定律可知,
系统末动量为零,滑块与小车最终速度都为零,滑块的重力势能转化为内能,
系统损失的机械能:△E=mgR=1×10×1=10J;
答:(1)滑块P刚滑上小车时的速度大小为
(2)滑块P与小车组成的系统在整个过程中损失的机械能为10J.
解析
解:(1)滑块滑上小车前,滑块与小车组成的系统水平方向动量守恒,系统机械能守恒,
以向右为正方向,由动量守恒定律得:mv1-Mv2=0,
由机械能守恒定律得:mgR=

代入数据,解得:v1=
(2)由于系统水平方向动量守恒,系统初动量为零,由动量守恒定律可知,
系统末动量为零,滑块与小车最终速度都为零,滑块的重力势能转化为内能,
系统损失的机械能:△E=mgR=1×10×1=10J;
答:(1)滑块P刚滑上小车时的速度大小为
(2)滑块P与小车组成的系统在整个过程中损失的机械能为10J.

正确答案
解:对AB整体,根据机械能守恒定律:
2mgh=
得:v=
AB碰撞过程,设向左为正方向,根据动量守恒:
mvB=2mv
得:vB=2v
BC与弹簧分离的过程满足动量守恒,即系统总动量为零:
则mvc=mvB
得:vc=vB
根据能量的转化与守恒:EP=

答:轻弹簧最初具有的弹性势能为8mgh.
解析
解:对AB整体,根据机械能守恒定律:
2mgh=
得:v=
AB碰撞过程,设向左为正方向,根据动量守恒:
mvB=2mv
得:vB=2v
BC与弹簧分离的过程满足动量守恒,即系统总动量为零:
则mvc=mvB
得:vc=vB
根据能量的转化与守恒:EP=

答:轻弹簧最初具有的弹性势能为8mgh.
扫码查看完整答案与解析






