- 圆的切线的性质及判定定理
- 共255题
选修4-1:几何证明选讲
如图,AB为⊙O直径,直线CD与⊙O相切与E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,连接AE,BE.证明:
(I)∠FEB=∠CEB;
(II)EF2=AD•BC.
正确答案
证明:(1)∵直线CD与⊙O相切于E,∴∠CEB=∠EAB.
∵AB为⊙O的直径,∴∠AEB=90°.
∴∠EAB+∠EBA=90°.
∵EF⊥AB,∴∠FEB+∠EBF=90°.
∴∠FEB=∠EAB.
∴∠CEB=∠EAB.
(2)∵BC⊥CD,∴∠ECB=90°=∠EFB,
又∠CEB=∠FEB,EB公用.
∴△CEB≌△FEB.
∴CB=FB.
同理可得△ADE≌△AFE,∴AD=AF.
在Rt△AEB中,∵EF⊥AB,∴EF2=AF•FB.
∴EF2=AD•CB.
解析
证明:(1)∵直线CD与⊙O相切于E,∴∠CEB=∠EAB.
∵AB为⊙O的直径,∴∠AEB=90°.
∴∠EAB+∠EBA=90°.
∵EF⊥AB,∴∠FEB+∠EBF=90°.
∴∠FEB=∠EAB.
∴∠CEB=∠EAB.
(2)∵BC⊥CD,∴∠ECB=90°=∠EFB,
又∠CEB=∠FEB,EB公用.
∴△CEB≌△FEB.
∴CB=FB.
同理可得△ADE≌△AFE,∴AD=AF.
在Rt△AEB中,∵EF⊥AB,∴EF2=AF•FB.
∴EF2=AD•CB.
如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求图中阴影部分的面积.
正确答案
(1)证明:连接OC,OC交BD于E,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∵∠CDB=∠OBD,
∴CD∥AB,
又∵AC∥BD,
∴四边形ABDC为平行四边形,
∴∠A=∠D=30°,
∴∠OCA=180°-∠A-∠COB=90°,即OC⊥AC,
又∵OC是⊙O的半径,
∴AC是⊙O的切线;
(2)解:∵在△OEB和△CED中,∠OBE=∠CDE,∠OEB=∠CED,BE=DE,∴△OEB≌△CED(AAS),∴S阴影=S扇形BOC.
∴S阴影==6π.
答:阴影部分的面积是6π.
解析
(1)证明:连接OC,OC交BD于E,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∵∠CDB=∠OBD,
∴CD∥AB,
又∵AC∥BD,
∴四边形ABDC为平行四边形,
∴∠A=∠D=30°,
∴∠OCA=180°-∠A-∠COB=90°,即OC⊥AC,
又∵OC是⊙O的半径,
∴AC是⊙O的切线;
(2)解:∵在△OEB和△CED中,∠OBE=∠CDE,∠OEB=∠CED,BE=DE,∴△OEB≌△CED(AAS),∴S阴影=S扇形BOC.
∴S阴影==6π.
答:阴影部分的面积是6π.
选修4-1:几何证明选讲
如图,在△ABC中,∠ABC=90°,以BC为直径的圆O交AC于点D,设E为AB的中点.
(1)求证:直线DE为圆O的切线;
(2)设CE交圆O于点F,求证:CD•CA=CF•CE.
正确答案
证明:(1)连接BD,OD,OE,则∠BDC=∠BDA=90°,
∵E为AB的中点,∴=BE,
∴OD2+DE2=OB2+BE2=OE2,∴∠ODE=90°.
∴直线DE为圆O的切线;
(2)连接BF,∵BC为⊙O的直径,∴BF⊥CE,
∴在RT△BCE中,CF•CE=BC2,
同理在RT△ABC中,CD•CA=BC2,
∴CD•CA=CF•CB.
解析
证明:(1)连接BD,OD,OE,则∠BDC=∠BDA=90°,
∵E为AB的中点,∴=BE,
∴OD2+DE2=OB2+BE2=OE2,∴∠ODE=90°.
∴直线DE为圆O的切线;
(2)连接BF,∵BC为⊙O的直径,∴BF⊥CE,
∴在RT△BCE中,CF•CE=BC2,
同理在RT△ABC中,CD•CA=BC2,
∴CD•CA=CF•CB.
选修4-1:几何证明选讲
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.
求证:BT平分∠OBA.
正确答案
证明:连结OT,因为AT是切线,所以OT⊥AP.
又因为∠PAQ是直角,即AQ⊥AP,所以AB∥OT,所以∠TBA=∠BTO.
又OT=OB,所以∠OTB=∠OBT,
所以∠OBT=∠TBA,
即BT平分∠OBA.
解析
证明:连结OT,因为AT是切线,所以OT⊥AP.
又因为∠PAQ是直角,即AQ⊥AP,所以AB∥OT,所以∠TBA=∠BTO.
又OT=OB,所以∠OTB=∠OBT,
所以∠OBT=∠TBA,
即BT平分∠OBA.
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若,求
的值.
正确答案
证明:(Ⅰ)连接OD,
∵OA=OD,∴∠ODA=∠OAD
∵∠BAC的平分线是AD
∴∠OAD=∠DAC
∴∠DAC=∠ODA,可得OD∥AE…(3分)
又∵DE⊥AE,∴DE⊥OD
∵OD是⊙O的半径
∴DE是⊙O的切线.…(5分)
(Ⅱ)连接BC、DB,过D作DH⊥AB于H,
∵AB是⊙O的直径,
∴∠ACB=90°,
Rt△ABC中,
∵OD∥AE,∴∠DOH=∠CAB,
∴.
∵Rt△HOD中,,
∴,设OD=5x,则AB=10x,OH=3x,
∴Rt△HOD中,DH==4x,AH=AO+OH=8x,
Rt△HAD中,AD2=AH2+DH2=80x2…(8分)
∵∠BAD=∠DAE,∠AED=∠ADB=90°
∴△ADE∽△ADB,可得,
∴AD2=AE•AB=AE•10x,而AD2=80x2
∴AE=8x
又∵OD∥AE,
∴△AEF∽△ODF,可得…(10分)
解析
证明:(Ⅰ)连接OD,
∵OA=OD,∴∠ODA=∠OAD
∵∠BAC的平分线是AD
∴∠OAD=∠DAC
∴∠DAC=∠ODA,可得OD∥AE…(3分)
又∵DE⊥AE,∴DE⊥OD
∵OD是⊙O的半径
∴DE是⊙O的切线.…(5分)
(Ⅱ)连接BC、DB,过D作DH⊥AB于H,
∵AB是⊙O的直径,
∴∠ACB=90°,
Rt△ABC中,
∵OD∥AE,∴∠DOH=∠CAB,
∴.
∵Rt△HOD中,,
∴,设OD=5x,则AB=10x,OH=3x,
∴Rt△HOD中,DH==4x,AH=AO+OH=8x,
Rt△HAD中,AD2=AH2+DH2=80x2…(8分)
∵∠BAD=∠DAE,∠AED=∠ADB=90°
∴△ADE∽△ADB,可得,
∴AD2=AE•AB=AE•10x,而AD2=80x2
∴AE=8x
又∵OD∥AE,
∴△AEF∽△ODF,可得…(10分)
扫码查看完整答案与解析