- 算法初步
- 共2983题
描述算法的方法通常有:(1)自然语言;(2)______;(3)伪代码.
正确答案
描述算法的方法通常自然语言,流程图,伪代码,故(2)中应填 流程图
故答案为流程图
已知1+2+3+…+n=(n∈N*),对于求1+2+3+…+100的一个算法:
第一步:取n=100;
第二步:______;
第三步:输出计算结果.
正确答案
求1+2+3+…+100的一个算法:
第一步:取n=100;
第二步:计算
第三步:输出计算结果.
故答案为:计算
执行右边的程序框图6,若p=0.8,则输出的n= .
正确答案
试题分析:此时
,所以输出的
.
执行程序框图,如果输入,那么输出
.
正确答案
.
试题分析:,
,
成立,执行第一次循环,
,
,
;
成立,执行第二次循环,
,
,
;
成立,执行第三次循环,
,
,
;
不成立,跳出循环体,输出
.
根据如图所示的算法流程,可知输出的结果为 .
正确答案
7
因为当时,才退出循环体输出i的值,所以i=7.
定义一种运算“*”,对于n∈N,满足以下运算性质:①2*2=1;②(2n+2)*2=(2n*2)+3.则2004*2的数值为______.
正确答案
∵(2n+2)*2=(2n*2)+3即2(n+1)*2=2(n*2)+3,
∴2*2=1;
4*2=2×(1+1)*2=2*2+3=4
6*2=2×(2+1)*2=4*2+3=7
8*2=2×(3+1)*2=6*2+3=10
…
∴2(n+1)*2=3n+1
故2004*2=2(1001+1))*2=3×1001+1=3004
故答案为:3004
如图所示的流程图,若输出的结果是15,则判断框中的横线上可以填入的最大整数为________.
正确答案
49
算法流程图在循环体中运行过程如下:
判断框中的横线上可以填入的最大整数为49.
运行右图所示程序框图,若输入值xÎ[-2,2],则输出值y的取值范围是 .
正确答案
试题分析:由程序框图可得到一个分段函数,因此本题实质为根据定义域xÎ[-2,2],求值域.当
时,
当
时,
所以
值域为
给出30个数:1,2,4,7,……,其规律是:第1个数是1,第2个数比第1个数大1, 第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示)
(I)请在图中判断框内(1)处和执行框中的(2)处填上合适的语句,使之能完成该题算法功能;
(II)根据程序框图写出程序.
正确答案
(I)(1)处应填i≤30;(2)处应填p=p+i.(II)略(参考解析)
试题分析:(I)判断语句的应用及当型循环程序的应用.(1)是控制循环的次数根据题意应该是30次.(2)中是要求30个数的累加和.(II)当型循环的程序的编写.按照格式编写.这是一个典型的求和程序的编写,要牢记.
试题解析:(I)该算法使用了当型循环结构,因为是求30个数的和,故循环体应执行30次,其中i是计数变量,因此判断框内的条件就是限制计数变量i的,故应为i≤30.算法中的变量p实质是表示参与求和的各个数,由于它也是变化的,且满足第i个数比其前一个数大i-1,第i+1比其前一个数大i故应有p=p+i.故(1)处应填i≤30;(2)处应填p=p+i.
(II)根据程序框图写出程序
i=1
p=1
s=0
WHILE i<=30
s=s+p
p=p+i
i=i+1
WEND
PRINT s
下图是一个算法流程图,则输出的S的值是 ▲ .
正确答案
-9
略
如图是求12+22+32+…+1002的值的程序框图,则正整数n= .
正确答案
100
【思路点拨】从开始执行循环体,依次写出i,s的变化,找出i与n的关系.
:解:第一次执行后,i=2,s=12;第二次执行后,i=3,s=12+22,而题目要求计算12+22+…+1002,故n=100.
阅读下面的程序框图,该程序输出的结果是_________.
正确答案
试题分析:根据框图的循环结构,依次;
;
;
;
。跳出循环,输出
。
如图所示的流程图,若输入的值为2,则输出
的值为 .
正确答案
127
试题分析:根据题意可得:输入,
由不成立,运行第一次:
;
由不成立,运行第二次:
;
由不成立,运行第三次:
;
由成立,即输出127.
如图是一个求50名学生数学平均分的程序,在横线上应填的语句为 .
正确答案
试题分析:因为是求50名学生数学平均分,因此当且仅当循环50次,所以判断语句有关次数,即
如图是一个算法的流程图,则最后输出的S=________.
正确答案
36
这是一个典型的当型循环结构,
当n=1,3,5,7,9,11时满足条件,
执行下面的语句,S=1+3+5+7+9+11=36,当n=13时不满足条件,退出循环,执行输出S=36.
扫码查看完整答案与解析