热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

如果(2x2-)n的展开式中含有非零常数项,则正整数n的最小值为______.

正确答案

(2x2-

1

3x

)n展开式的通项为Tr+1=(2x2)n-r(-

1

3x

)r=(-1)r2n-rx2n-7r3

∵展开式中含有非零常数项

∴2n-=0即4n=7r有解

∵n∈N,r∈N

∴n是7的倍数

∴正整数n的最小值为7.

故答案为7

1
题型:填空题
|
填空题

(1+x)5展开式中不含x3项的系数的和为______.

正确答案

设求的项为Tr+1=C5rxr

今r=3,

∴T4=C53=10.

所有系数和为25=32

∴不含x3项的所有项的系数和为32-10=22

故答案为:22

1
题型:填空题
|
填空题

已知(x+a)3与(x-5)6的展开式中,x2的系数相同,那么log5a=______.

正确答案

由于(x+a)3与的展开式中,x2的系数为 a=3a,

(x-5)6的展开式中,x2的系数为 •(-5)4=3×55

由3a=3×55,可得 a=55,故log5a=5,

故答案为 5.

1
题型:填空题
|
填空题

设常数,则a=(    );(a+a2+…an)=(    )

正确答案

,1

1
题型:填空题
|
填空题

若(2x-1)7=a7x7+a6x6+…+a1x+a0,则a7+a5+a3+a1=______.

正确答案

在所给的等式中,令x=1可得 a7 +a6 +…+a1 +a0 =1 ①,再令x=-1可得-a7 +a6 -55+a4-a3+a2-a1 +a0 =-37 ②.

把①减去②,两边再同时除以2求得 a7+a5+a3+a1==1094,

故答案为1094.

百度题库 > 高考 > 数学 > 二项式定理与性质

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题