- 数列与其它知识的综合问题
- 共8题
1
题型:简答题
|
17.等差数列{}中,
(I)求{}的通项公式;
(II)设=[
],求数列{
}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
正确答案
知识点
等差数列的前n项和及其最值其它方法求和数列与其它知识的综合问题
1
题型:填空题
|
等差数列{}中,
(I)求{}的通项公式;
(II)设=[
],求数列{
}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
正确答案
(Ⅰ)设数列的公差为d。由题意有
,解得
,
所以的通项公式为
.
(Ⅱ)由(Ⅰ)知,
当n=1,2,3时,;
当n=4,5时,;
当n=6,7,8时,;
当n=9,10时,,
所以数列的前10项和为
.
知识点
等差数列的性质及应用其它方法求和数列与不等式的综合数列与其它知识的综合问题
1
题型:简答题
|
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
对于无穷数列{}与{
},记A={
|
=
,
},B={
|
=
,
},若同时满足条件:①{
},{
}均单调递增;②
且
,则称{
}与{
}是无穷互补数列.
(1)若=
,
=
,判断{
}与{
}是否为无穷互补数列,并说明理由;
(2)若=
且{
}与{
}是无穷互补数列,求数列{
}的前16项的和;
(3)若{}与{
}是无穷互补数列,{
}为等差数列且
=36,求{
}与{
}得通项公式.
正确答案
(1)因为,
,所以
,
从而与
不是无穷互补数列.
(2)因为,所以
.
数列的前
项的和为
.
(3)设的公差为
,
,则
.
由,得
或
.
若,则
,
,与“
与
是无穷互补数列”矛盾;
若,则
,
,
.
综上,,
.
知识点
其它方法求和数列与函数的综合数列与其它知识的综合问题
已完结
扫码查看完整答案与解析