- 直线、圆及圆锥曲线的交汇问题
- 共97题
5. 是抛物线
的焦点,
是抛物线上的两点,
,则线段
的中点到
轴的距离为( )
正确答案
解析
由抛物线方程可知,准线方程为x=- ,过A、B分别向准线作垂线段,设垂足为
、
,再设A,B两点到y轴的距离为
,
,根据抛物线的定义可知,|AF|+|BF|=
=
+
=8,
,设AB的中点到y轴的距离为d,则d=
=
,所以选项为C.
考查方向
解题思路
首先求抛物线的准线方程,再由抛物线的定义,过A,B向准线作垂线段, 再设A,B两点到y轴的距离为,
, |AF|+|BF|=
+
=8,
, 再根据梯形中位线的性质, 求出AB的中点到y轴的距离为
.
易错点
抛物线的性质, 数学结合的应用.
知识点
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
5. 是抛物线
的焦点,
是抛物线上的两点,
,则线段
的中点到
轴的距离为( )
正确答案
解析
由抛物线方程可知,准线方程为x=- ,过A、B分别向准线作垂线段,设垂足为
、
,再设A,B两点到y轴的距离为
,
,根据抛物线的定义可知,|AF|+|BF|=
=
+
=8,
,设AB的中点到y轴的距离为d,则d=
=
,所以选项为C.
考查方向
解题思路
首先求抛物线的准线方程,再由抛物线的定义,过A,B向准线作垂线段, 再设A,B两点到y轴的距离为,
, |AF|+|BF|=
+
=8,
, 再根据梯形中位线的性质, 求出AB的中点到y轴的距离为
.
易错点
抛物线的性质, 数学结合的应用.
知识点
11. 已知双曲线的右焦点为
,点
分别在
的两条渐近线上,
轴,
,则双曲线的离心率为( )
正确答案
解析
如图,易知A(),因为BF//OA,AB⊥OB,所以
,所以AB=0F=
,A到直线bx+ay=0的距离为
=
,所以c=2b,所以e=
.
考查方向
解题思路
画出简图,得出A(),再根据条件,得
,利用A到直线bx+ay=0的距离为
=
,得到b,c关系,进而求出离心率。
易错点
不能利用双曲线的性质找到a,b,c系的关系
知识点
11. 已知双曲线的右焦点为
,点
分别在
的两条渐近线上,
轴,
,则双曲线的离心率为( )
正确答案
解析
如图,易知A(),因为BF//OA,AB⊥OB,所以
,所以AB=0F=
,A到直线bx+ay=0的距离为
=
,所以c=2b,所以e=
.
考查方向
解题思路
画出简图,得出A(),再根据条件,得
,利用A到直线bx+ay=0的距离为
=
,得到b,c关系,进而求出离心率。
易错点
不能利用双曲线的性质找到a,b,c系的关系
知识点
扫码查看完整答案与解析