- 直线、圆及圆锥曲线的交汇问题
- 共97题
11. 已知双曲线的右焦点为
,点
分别在
的两条渐近线上,
轴,
,则双曲线的离心率为( )
正确答案
解析
如图,易知A(),因为BF//OA,AB⊥OB,所以
,所以AB=0F=
,A到直线bx+ay=0的距离为
=
,所以c=2b,所以e=
.
考查方向
解题思路
画出简图,得出A(),再根据条件,得
,利用A到直线bx+ay=0的距离为
=
,得到b,c关系,进而求出离心率。
易错点
不能利用双曲线的性质找到a,b,c系的关系
知识点
10.已知双曲线过抛物线
的焦点,则此双曲线的渐近线方程为 .
正确答案
解析
抛物线的焦点抛物线
的焦点为(2,0),代入双曲线方程,
所以,,所以,
,渐近线方程为:
故此题答案为。
考查方向
解题思路
先根据题意抛物线的焦点坐标为(2,0)从而得出。再由双曲线渐近线方程得到
,即可得到双曲线的渐近线方程。
易错点
本题较简单,只要抛物线的定义及双曲线渐近线方程等知识熟知就不会出错。
知识点
5. 是抛物线
的焦点,
是抛物线上的两点,
,则线段
的中点到
轴的距离为( )
正确答案
解析
由抛物线方程可知,准线方程为x=- ,过A、B分别向准线作垂线段,设垂足为
、
,再设A,B两点到y轴的距离为
,
,根据抛物线的定义可知,|AF|+|BF|=
=
+
=8,
,设AB的中点到y轴的距离为d,则d=
=
,所以选项为C.
考查方向
解题思路
首先求抛物线的准线方程,再由抛物线的定义,过A,B向准线作垂线段, 再设A,B两点到y轴的距离为,
, |AF|+|BF|=
+
=8,
, 再根据梯形中位线的性质, 求出AB的中点到y轴的距离为
.
易错点
抛物线的性质, 数学结合的应用.
知识点
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
8. 若圆与曲线
的没有公共点,则半径
的取值范围是
正确答案
解析
只需求圆心(0,1)到曲线上的点的最短距离,取曲线上的点
,
,
距离
所以,若圆与曲线无公共点,则0< r<.
故选C。
考查方向
解题思路
先根据题意取曲线上的点,
。求圆心(0,1)到曲线
上的点的距离,化简求出最值,即可得到结论。
易错点
本题易在理解题意上出现错误。本题易在用变量得到距离后求最值时极易出错。
知识点
7.在平面直角坐标系中,双曲线过点
,且其两条渐近线的方程分别为
和
,则双曲线
的标准方程为
正确答案
解析
已知双曲线的渐近线方程为,设双曲线的方程为
;
把点代入上面方程,得
,所以双曲线方程为
,化为标准方程即可得
。
A选项不正确,C选项不正确,D选项不正确,所以选B选项。
考查方向
解题思路
已知双曲线的渐近线方程,设双曲线的方程为
;
把所给点代入上面方程,即得的值,确定双曲线方程。
易错点
双曲线的焦点位置不好确定,不会设双曲线方程的形式。
知识点
12.在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为 .
正确答案
解析
由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.
故答案为:.
考查方向
解题思路
双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.
易错点
本题考查双曲线的性质,本题在恒成立问题的解决过程中易错.
知识点
8.双曲线的一条渐近线与圆
相切,则此双曲线的离心率为
正确答案
解析
双曲线的一条渐近线方程:
.
双曲线的渐近线方程与圆
相切,
可得:,可得:
,两边平方
,
即,即
,可得:
,
,解得
.
故选A.
考查方向
解题思路
先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离为圆的半径求得a和b的关系,进而利用求得a和c的关系,则双曲线的离心率可求.
易错点
直线与圆相切,圆心到直线的距离等于半径.
知识点
扫码查看完整答案与解析