- 弦切角
- 共14题
22. 如图5,圆O的直径,P是AB延长线上一点,BP=2 ,
割线PCD交圆O于点C,D,过点P作AP的垂线,交直线AC
于点E,交直线AD于点F.
(Ⅰ) 当时,求的度数;
(Ⅱ) 求的值.
正确答案
(1);(2)24;
解析
:(Ⅰ) 连结BC,∵AB是圆O的直径 ∴则,-----1分
又,--------------2分
,--------------------------------------3分
∵;-------------4分
(Ⅱ):由(Ⅰ)知,
∴D、C、E、F四点共圆,---------------------------------6分
∴,-----------------------------------------------------------7分
∵PC、PA都是圆O的割线,∴,------------------------------9分
∴=24. ----------------------------------------------------------------10分
考查方向
解题思路
第(1)问中找不到与之间的关系;第(2)问无法发现D、C、E、F四点共圆导致不能使用割线定理。
易错点
不会使用第(1)问的结论推导第(2)问;
知识点
如图,已知⊙O中,直径AB垂直于弦CD,垂足为M,P是CD延长线上一点,PE切⊙O于点E,连接BE交CD于点F,证明:
(1)∠BFM=∠PEF;
(2)PF2=PD·PC.
正确答案
见解析
解析
(1)连接OE,
∵PE切⊙O于点E,∴OE⊥PE.
∴∠PEF+∠FEO=90°。
又∵AB⊥CD,
∴∠B+∠BFM=90°。
又∵∠B=∠FEO,
∴∠BFM=∠PEF.
(2)∵∠EFP=∠BFM,
∴∠EFP=∠PEF.
∴PE=PF.
又∵PE2=PD·PC,
∴PF2=PD·PC.
知识点
已知()的外接圆为圆,过的切线交于点,过作直线
交于点,且
(1)求证:平分角;
(2)若,求的值
正确答案
见解析
解析
证明:(1)由 得,
是切线, , 平分角
(2)由,得,由
即
,由,由
知识点
10.如图,是半径为5的圆上的一个定点,单位向量在点处与圆相切,点是圆上的一个动点,且点与点不重合,则的取值范围是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析