- 导数与积分
- 共1403题
已知曲线的一条切线的斜率为
,则切点的横坐标为( )
正确答案
解析
设切点的横坐标为(x0,y0)
∵曲线的一条切线的斜率为
,
∴y′=﹣
=
,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3
故选A,
知识点
在一次课内比教学活动中9位评委给某参赛教师的分数如下图所示,记分员在去掉一个最高分和一个最低分后,算出平均分为92分,复核员在复核时发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字应该是 。
正确答案
5
解析
根据茎叶图运算,直接得出结果。
知识点
已知函数在点(1,
)处的切线方程为
。
(1)求、
的值;
(2)对函数定义域内的任一个实数
,
恒成立,求实数
的取值范围。
正确答案
见解析
解析
解析:
(1)由
而点在直线
上
,
又直线的斜率为
故有
(2)由(1)得,
由及
。
令,
令,
故在区间
上是减函数,
故当时,
,
当时,
从而当时,
,当
时,
在
是增函数,在
是减函数,
故
要使成立,只需
故
的取值范围是
知识点
如图,是可导函数,直线
是曲线
在
处的切线,令
,则
正确答案
解析
略
知识点
已知函数.其中
.
(1)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(2)若f(x)≤g(x)-1对任意x>0恒成立,求实数a的值;
(3)当a<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为,若
,求a的取值范围.
正确答案
见解析
解析
(1),依题意得:a=2; ……………2分
曲线y=f(x)在x=1处的切线为2x-y-2=0,
曲线y=g(x)在x=1处的切线方程为2x-y-1=0. ……………3分
两直线间的距离为……………4分
(2)令h(x)=f(x)-g(x)+1, ,则
当a≤0时, 注意到x>0, 所以<0, 所以h(x)在(0,+∞)单调递减, ………………5分
又h(1)=0,故0<x<1时,h(x)>0,即f(x)> g(x)-1,与题设矛盾. ……………6分
当a>0时,
当,
当
时,
所以h(x)在上是增函数,在上是减函数, ……………8分
∴h(x)≤
因为h(1)=0,又当a≠2时,≠1,与
不符.
所以a=2. ……………9分
(3)当a<0时,由(2)知<0,∴h(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|h(x1)-h(x2)|=h(x1)-h(x2),|x1-x2|=x2-x1, ……………10分
∴|h(x1)-h(x2)|≥|x1-x2
等价于h(x1)-h(x2)≥x2-x1,即h(x1)+x1≥h(x2)+x2, ……………11分
令H(x)=h(x)+x=alnx-x2+x+1,H(x)在(0,+∞)上是减函数,
∵ (x>0), ……………12分
∴-2x2+x+a≤0在x>0时恒成立,∴a≤(2x2-x)min ……………13分
又x>0时, (2x2-x)min=
∴a≤-,又a<0,∴a的取值范围是. ……………14分
知识点
设函数,其图象在点
处的切线
与直线
垂直,则直线
与坐标轴围成的三角形的面积为( )
正确答案
解析
略
知识点
已知函数,
。
(1)若曲线与
在公共点
处有相同的切线,求实数
、
的值;
(2)在(1)的条件下,证明≤
在
上恒成立;
(3)若,
,求方程
在区间
内实根的个数(
为自然对数的底数)。
正确答案
见解析。
解析
(1),
。…………………2分
∵曲线与
在公共点
处有相同的切线
∴ , 解得,
…………………4分
(2)设,
则, ……………5分
∴当时,
;当
时,
,即
在
上单调递增,
在上单调递减。 …………………7分
∴在
上的最大值为
。
∴,即
。 …………………8分
(3)原方程可化为
令,则
,由
得
且
,
显然得到
,
由
得
,
,得
在
上单调递增,在
上单调递减
当
时,
……………10分
,
,
,
又
方程
在区间
内有两个实根 ………………12分
知识点
设函数f(x)=ex﹣ax﹣2
(1)求f(x)的单调区间
(2)若a=1,k为整数,且当x>0时,(x﹣k) f´(x)+x+1>0,求k的最大值。
正确答案
见解析
解析
解:(1)函数f(x)=ex﹣ax﹣2的定义域是R,f′(x)=ex﹣a,
若a≤0,则f′(x)=ex﹣a≥0,所以函数f(x)=ex﹣ax﹣2在(﹣∞,+∞)上单调递增。
若a>0,则当x∈(﹣∞,lna)时,f′(x)=ex﹣a<0;
当x∈(lna,+∞)时,f′(x)=ex﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增。
(2)由于a=1,所以,(x﹣k) f´(x)+x+1=(x﹣k) (ex﹣1)+x+1
故当x>0时,(x﹣k) f´(x)+x+1>0等价于k<(x>0)①
令g(x)=,则g′(x)=
由(1)知,函数h(x)=ex﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,
所以h(x)=ex﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)
当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α),又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)
由于①式等价于k<g(α),故整数k的最大值为2
知识点
已知函数。
(1)若,求
在
处的切线方程;
(2)若在R上是增函数,求实数
的取值范围。
正确答案
(1)
(2)
解析
(1)由,得
,
…………2分
所以,
……………………4分
所以所求切线方程为,
即 ………………………6分
(2)由已知,得
……………7分
因为函数在R上增函数,所以
恒成立
即不等式恒成立,整理得
……………… 8分
令,∴
。
当时,
,所以
递减函数,
当时,
,所以
递增函数 ………………… 10分
由此得,即
的取值范围是
………… 12分
知识点
已知函数,
且
.
(1)若曲线在点
处的切线垂直于
轴,求实数
的值;
(2)当时,求函数
的最小值.
正确答案
见解析。
解析
由题意得:
; (3分)
(1)由曲线在点
处的切线垂直于
轴,结合导数的几何意义得
,即
,解得
; (6分)
(2)设,则只需求当
时,函数
的最小值.
令,解得
或
,而
,即
.
从而函数在
和
上单调递增,在
上单调递减.
当时,即
时,函数
在
上为减函数,
;
当,即
时,函数
的极小值即为其在区间
上的最小值,
.
综上可知,当时,函数
的最小值为
;当
时,函数
的最小值为
. (12分)
知识点
扫码查看完整答案与解析