- 椭圆的几何性质
- 共137题
如图,椭圆(
>
>0)的左右焦点分别为
,
,且过
的直线交椭圆于P,Q两点,且PQ
.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)
26.若||=2+
,|
|=2-
,求椭圆的标准方程.
27.若|PQ|=|
|,且
,试确定椭圆离心率的取值范围.
正确答案
.
解析
试题分析:由椭圆的定义知可求出
的值,再由
及勾股定理可求得
的值,最后由
求得
的值,从而根据椭圆的标准方程
得到结果.
试题解析:由椭圆的定义,
设椭圆的半焦距为,由已知
,因此
即
从而
故所求椭圆的标准方程为.
考查方向
解题思路
本题椭圆的定义、标准方程、简单几何性质的应用,应用椭圆的定义及基本量间的关第易于求解,本题属于较难题,
易错点
注意运算的准确性.
正确答案
.
解析
试题分析:由,得
由椭圆的定义,,进而
于是.解得
,
故.再注意到
从而
,两边除以
,得
,若记
,则上式变成
.再由
,并注意函数的单调性,即可求得离心率
的取值范围。
试题解析:(2)如(1))图,由,得
由椭圆的定义,,进而
于是.
解得,故
.
由勾股定理得,
从而,
两边除以,得
,
若记,则上式变成
.
由,并注意到
关于
的单调性,得
,即
,
进而,即
.
考查方向
解题思路
应用条件、椭圆的定义及勾股定理建军立离心率与的关系式,从而将离心率
表示成为
的函数,然后得用函数相关知识,求其值域,即是所求的范围,本题属于较难题,
易错点
函数思想方法的应用.
20.如图,已知椭圆的四个顶点分别为
,左右焦点分别为
,若圆C:
(
)上有且只有一个点
满足
,
(1)求圆C的半径;
(2)若点为圆C上的一个动点,直线
交椭圆于点
,
交直线于点
,求
的最大值;
正确答案
(1);(2)
解析
试题分析:本题属直线与圆锥曲线的位置关系的问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求;(2)利用设而不求的方法再结合基本不等式来求解。
试题解析::(1)依题意得,
设点,由
得:
,化简得
,
∴点的轨迹是以点
为圆心,
为半径的圆, 又∵点
在圆
上并且有且只有一个点
,即两圆相切,
当两圆外切时,圆心距,成立
当两圆内切时,圆心距,不成立
∴ (2)设直线
为
,
由得,
联立
,消去
并整理得:
,
解得点的横坐标为
,
把直线:
与直线
:
联立解得点
横坐标
8分
所以 11分
(∵求最大值,显然为正才可能取最大,)
当且仅当时,取等号,
∴的最大值
为
;
考查方向
解题思路
本题考直线与圆锥曲线的位置关系,解题步骤如下:(1)直接按照步骤来求;(2)利用设而不求的方法再结合基本不等式来求解。
易错点
计算量大容易算错。
知识点
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
20. 如图:A,B,C是椭圆的顶点,点
为椭圆的右焦点,离心率为
,且椭圆过点
.
(I)求椭圆的方程;
(II)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为,证明:
.
正确答案
见解析
解析
考查方向
解题思路
1)根据离心率得到a,b的关系,根据点在椭圆上联立求出椭圆方程
2)设点p,根据要求求出直线AP,与直线BC求出点D
3)根据直线CP得到点E
4)使用两点间斜率公式得到DE斜率,化简得到结论
易错点
本题主要有以下几个错误:
1)椭圆方程求错
2)找不到有效突破点,导致运算量加大,无法得出理想结果
知识点
已知椭圆的离心率为
,它的四个顶点构成的四边形的面积为
.
27.求椭圆的方程;
28.设椭圆的右焦点为
,过
作两条互相垂直的直线
,直线
与椭圆
交于
两点,直线
与直线
交于
点.
(i)求证:线段的中点在直线
上;
(ii)求的取值范围.
正确答案
(Ⅰ).
解析
(Ⅰ)设椭圆的半焦距为
,则由题意可知
.
∵椭圆四个顶点构成的四边形的面积为
,∴
.
由得
.
∴椭圆的方程为
.
考查方向
解题思路
直接根据椭圆的基本量直接带入求解即可;
易错点
在运算时算数出错;
正确答案
(Ⅱ)(i)略;(ii).
解析
(Ⅱ)(i)由(Ⅰ)知,椭圆的方程为
,它的右焦点为
.
(1)当直线的斜率不存在时,直线
的方程为
,直线
的方程为
,此时线段
的中点为
,点
的坐标为
,直线
的方程为
,线段
的中点在直线
上.
(2)当直线的斜率存在时,若直线
的斜率为
,则直线
的方程为
,与
不相交,所以直线
的斜率不为
.设直线
的方程为
,则直线
的方程为
.
设两点的坐标分别为
,线段
的中点为
.
由得
.
判别式,
.
则,
.
由得点
的坐标为
,∴直线
的斜率为
,
∴直线的方程为
.∴
,
∴线段的中点在直线
上.
(ii)(1)当直线的斜率不存在时,由
得,
.
∴,此时
.
(2)由(i)知直线的斜率不为
,所以当直线
的斜率存在且不为
时,
,
.
.
令,
则∵
,∴
,
,∴
.
此时.∴
的取值范围为
.
考查方向
易错点
不会构造函数,导致无法入手。
【解题思路
第(1)小问先求出线段的中点为
,然后求直线ON的方程带入即可。
第(2)问先求,构造函数后求函数的值域即可。
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的
,则该椭圆的离心率为( )
正确答案
知识点
12.一个圆经过椭圆的三个顶点,且圆心在
轴的正半轴上,则该圆的标准方程为 .
正确答案
解析
设圆心为(,0),则半径为
,则
,解得
,故圆的方程为
。
考查方向
圆和椭圆的基本知识.
解题思路
根据椭圆的标准方程,利用椭圆的性质,求出三个顶点的坐标,在直角坐标系中运用勾股定理求出圆心坐标、半径,代入圆的标准方程。
易错点
因为圆心在x轴的正半轴上,所以解方程时,注意舍去不合题意的根。
教师点评
本题属于简单题,意在考查学生对椭圆的标准方程和圆的标准方程知识掌握程度。
知识点
8.已知椭圆(
)的左焦点为
,则
( )
正确答案
解析
由题意得:,因为
,所以
,故选C。
知识点
5.已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线
的焦点重合,
是C的准线与E的两个交点,则
( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析