- 椭圆的几何性质
- 共137题
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的
,则该椭圆的离心率为( )
正确答案
知识点
12.一个圆经过椭圆的三个顶点,且圆心在
轴的正半轴上,则该圆的标准方程为 .
正确答案
解析
设圆心为(,0),则半径为
,则
,解得
,故圆的方程为
。
考查方向
圆和椭圆的基本知识.
解题思路
根据椭圆的标准方程,利用椭圆的性质,求出三个顶点的坐标,在直角坐标系中运用勾股定理求出圆心坐标、半径,代入圆的标准方程。
易错点
因为圆心在x轴的正半轴上,所以解方程时,注意舍去不合题意的根。
教师点评
本题属于简单题,意在考查学生对椭圆的标准方程和圆的标准方程知识掌握程度。
知识点
8.已知椭圆(
)的左焦点为
,则
( )
正确答案
解析
由题意得:,因为
,所以
,故选C。
知识点
5.已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线
的焦点重合,
是C的准线与E的两个交点,则
( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析