- 椭圆的几何性质
- 共137题
直线y=kx+m(m≠0)与椭圆W:+y2=1相交于A,C两点,O是坐标原点。
(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;
(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形。
正确答案
见解析
解析
(1)因为四边形OABC为菱形,所以AC与OB相互垂直平分。
所以可设A,代入椭圆方程得
,即
.
所以|AC|=.
(2)假设四边形OABC为菱形。
因为点B不是W的顶点,且AC⊥OB,所以k≠0.
由消y并整理得(1+4k2)x2+8kmx+4m2-4=0.
设A(x1,y1),C(x2,y2),
则,
.
所以AC的中点为M.
因为M为AC和OB的交点,且m≠0,k≠0,所以直线OB的斜率为.
因为k·≠-1,所以AC与OB不垂直。
所以四边形OABC不是菱形,与假设矛盾。
所以当点B不是W的顶点时,四边形OABC不可能是菱形。
知识点
设椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为( )。
正确答案
解析
如图所示,在Rt△PF1F2中,|F1F2|=2c,
设|PF2|=x,则|PF1|=2x,
由tan 30°=,得
.
而由椭圆定义得,|PF1|+|PF2|=2a=3x,
∴,∴
.
知识点
如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点,若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )
正确答案
解析
由题意可知椭圆的长轴长2a1是双曲线实轴长2a2的2倍,即a1=2a2,而椭圆与双曲线有相同的焦点。
故离心率之比为
知识点
如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )。
正确答案
解析
椭圆C1中,|AF1|+|AF2|=2a=4,|F1F2|=2c=.又四边形AF1BF2为矩形,∴∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,∴|AF1|=
,|AF2|=
,∴双曲线C2中,2c=
,2a=|AF2|-|AF1|=
,故
,故选D
知识点
已知点为椭圆
的左焦点,点
为椭圆
上任意一点,点
的坐标为
,则
取最大值时,点
的坐标为 。
正确答案
解析
略
知识点
扫码查看完整答案与解析